• Title/Summary/Keyword: Digital Tacho Graph

Search Result 13, Processing Time 0.017 seconds

Analysis of Bus Drivers' Working Environment and Accidents by Route-Bus Categories : Using Digital TachoGraph Data (노선버스 운송업종별 운전자의 근로여건 및 사고 분석 : DTG 데이터를 활용하여)

  • Kwon, Yeongmin;Yeo, Jiho;Byun, Jihye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • The accident of mass transit such as a bus could draw the large casualties and this induces social and economic losses. Recently, severe bus accidents caused by tiredness and inattention of bus drivers occurred and those lead to growing interest in bus accidents and the drivers' work environment. Therefore, this study analyzes the accident based on the work environment of bus drivers and route-bus categories. For the research, this study collected digital tachograph data and the bus company information for 271 domestic bus companies in 2017 and used ANOVA test and chi-square test as statistical methodologies. As a result, we figured out there are statistically significant differences in the accident according to the working environments. Especially, the present study confirmed the intracity bus with working every other day has the most frequent accidents. We expect that the results of this study be used as foundations for the improvement of working conditions to reduce route-bus accidents in the future.

Development of The Safe Driving Reward System for Truck Digital Tachograph using Hyperledger Fabric (하이퍼레저 패브릭을 이용한 화물차 디지털 운행기록 단말기의 안전운행 보상시스템 구현)

  • Kim, Yong-bae;Back, Juyong;Kim, Jongweon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.47-56
    • /
    • 2022
  • The safe driving reward system aims to reduce the loss of life and property by reducing the occurrence of accidents by motivating safe driving and encouraging active participation by providing direct reward to vehicle drivers who have performed safe driving. In the case of the existing digital tachograph, the goal is to limit dangerous driving by recording the driving status of the vehicle whereas the safe driving reward system is a support measure to increase the effect of accident prevention and induces safe driving with financial reward when safe driving is performed. In other words, in an area where accidents due to speeding are high, direct reward is provided to motivate safe driving to prevent traffic accidents when safe driving instructions such as speed compliance, maintaining distance between vehicles, and driving in designated lanes are performed. Since these safe operation data and reward histories must be managed transparently and safely, the reward evidences and histories were constructed using the closed blockchain Hyperledger Fabric. However, while transparency and safety are guaranteed in the blockchain system, low data processing speed is a problem. In this study, the sequential block generation speed was as low as 10 TPS(transaction per second), and as a result of applying the acceleration function a high-performance network of 1,000 TPS or more was implemented.

A New Approach to the Parameter Calibration of Two-Fluid Model (Two-Fluid 모형 파라미터 정산의 새로운 접근방안)

  • Kwon, Yeong-Beom;Lee, Jaehyeon;Kim, Sunho;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.63-71
    • /
    • 2019
  • The two-fluid model proposed by Herman and Prigogine is useful for analyzing macroscopic traffic flow in a network. The two-fluid model is used for analyzing a network through the relationship between the ratio of stopped vehicles and the average moving speed of the network, and the two-fluid model has also been applied in the urban transportation network where many signalized or unsignalized intersections existed. In general, the average travel speed and moving speed of a network decrease, and the ratio of stopped vehicles and low speed vehicles in network increase as the traffic demand increases. This study proposed the two-fluid model considering congested and uncongested traffic situations. The critical velocity and the weight factor for congested situation are calibrated by minimizing the root mean square error (RMSE). The critical speed of the Seoul network was about 34 kph, and the weight factor of the congestion on the network was about 0.61. In the proposed model, $R^2$ increased from 0.78 to 0.99 when compared to the existing model, suggesting that the proposed model can be applied in evaluating network performances or traffic signal operations.