• Title/Summary/Keyword: Digital Satellite Communication

Search Result 181, Processing Time 0.025 seconds

Performance of Magnitude Sum Correlation and Vector Sum Correlation Methods for Robust Frame Synchronization Under Low Signal-to-Noise Ratios (낮은 신호 대 잡음 비에서 강건한 프레임 동기를 위한 크기 합 상관 및 벡터 합 상관 방식의 성능 평가)

  • Lee, Dong-Uk;Kim, Sang-Tae;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.32-37
    • /
    • 2008
  • Satellite communication systems including the DVB-S2 (Digital Video Broadcasting - Satellite Version 2) system require operations under low signal-to-noise ratio (SNR) and large frequency offset values, and the initial frame synchronization process necessitates a robust correlation method. While a variety of conventional correlation structures exist for the initial synchronization, each method has different characteristics and performance in different channel environments. In this paper, we propose new correlation methods which exhibit enhanced performance in low SNR and large frequency offsets, and analyze their performance. The proposed methods use the magnitude sum and vector sum of extended differential correlation values, to maximize the correlation between the received signal and the synchronization sequence by using the spanned differential correlation result. The magnitude sum correlation method has better performance compared to conventional methods including the approximated ML (Maximum likelihood) method for SNR values below 4 dB with or without frequency offsets. The vector sum correlation method has improved performance over the magnitude sum method for channels with relatively small frequency offsets.

A Study on Design and Implementation of Low Noise Amplifier for Satellite Digital Audio Broadcasting Receiver (위성 DAB 수신을 위한 저잡음 증폭기의 설계 및 구현에 관한 연구)

  • Jeon, Joong-Sung;You, Jae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.213-219
    • /
    • 2004
  • In this paper, a LNA(Low Noise Amplifier) has been developed, which is operating at L-band i.e., 1452∼1492 MHz for satellite DAB(Digital Audio Brcadcasting) receiver. The LNA is designed to improve input and output reflection coefficient and VSWR(Voltage Standing Wave Ratio) by balanced amplifier. The LNA consists of low noise amplification stage and gain amplification stage, which make a using of GaAs FET ATF-10136 and VNA-25 respectively, and is fabricated by hybrid method. To supply most suitable voltage and current, active bias circuit is designed Active biasing offers the advantage that variations in $V_P$ and $I_{DSS}$ will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets $V_{gs}$ for the desired drain voltage and drain current. The LNA is fabricated on FR-4 substrate with RF circuit and bias circuit, and integrated in aluminum housing. As a reults, the characteristics of the LNA implemented more than 32 dB in gain. 0.2 dB in gain flatness. lower than 0.95 dB in noise figure, 1.28 and 1.43 each input and output VSWR, and -13 dBm in $P_{1dB}$.

Analysis Third-dimension Turbo Code for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 Third-dimension Turbo Code 분석)

  • Park, Tae-Doo;Kim, Min-Hyuk;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.279-285
    • /
    • 2011
  • The next generation wireless communication systems are required high BER performance better than present performance. Double binary Turbo code have error floor at high SNR, so it cannot be used in next generation wireless communication system. Therefore, many methods are proposed for overcome error floor at DVB-RCS NG(next generation). In this paper, we analysis structure of third-dimension Turbo code(3D-turbo code). 3D-Turbo code overcomes error flow by additive post-encoder in conventional DVB-RCS Turbo code. Performance of 3D-Turbo code is changed by post-encoder form, interleaving method, value of ${\lambda}$. So we are simulated by those parameter and proposed optimal form. By a result, performance of 3D-Turbo is better than conventional DVB-RCS Turbo code and it overcome error floor of conventional DVB-RCS Turbo code.

Empirical Study on the Prediction of Rain Attenuation in EHF(44 GHz) Band (EHF(44 GHz) 대역 강우 감쇠 특성 예측 연구)

  • Park Yong-Ho;Lee Joo-Hwan;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.848-854
    • /
    • 2005
  • The attenuation due to rain has been recognized as one of the major causes of unavailability of radio communication systems operating above about 10 GHz. To design radio links for telecommunications and to evaluate attenuation due to rainfall, it is important to have a good prediction model for rain attenuation such as a model for drop-size distribution of rainfall(DSD), a theoretical model for specific rain attenuation, and an empirical model fur effective path length through rain. In this paper, the extended generalized gamma distribution for drop-size distribution, based on the measurements in Chnugnam National University, is proposed as a new DSD model, and predicted specific attenuation characteristics using proposed DSD model and rain attenuation values in the 44 GHz satellite path using ITU-R effective path length model, are analysed. The predicted attenuation levels are also compared. It is found that an accurate prediction method for DSD is very important to reduce the prediction error in the local satellite path.

Design and Implementation of a Frequency Tunable Bandpass Filter for TVWS (TVWS용 주파수가변 대역통과필터의 설계 및 구현)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.44-47
    • /
    • 2016
  • In these days, interest of systems and services using TVWS(TV White Space) are increased, communication systems and services for TVWS have been actively studied. The unoccupied frequency in TVWS is different according to the geographical location and the time of day. RF systems having a frequency tunable bandpass filter operated in TVWS could be efficiently used. In this paper, a frequency tunable bandpass filter operated in 470 ~ 698MHz is designed and implemented. In consideration of simple control and physical size, the tunable bandpass filter is designed with 2-pole. The implemented tunable bandpass filter has the operating frequency band of 470 ~ 698MHz with control voltages of 1.58 ~ 3.93V, the insertion loss of maximum 4.78dB and the return loss of below 10dB. The implemented frequency tunable bandpass filter can be directly used in the RF receiver for TVWS and the design procedures could be used for developing a high power tunable bandpass filter as the basic research data.

Development of the Video Optical Network Unit for Dual Band Broadcasting Services (이중 대역 방송 서비스가 가능한 비디오 광수신기(ONU: Optical Network Unit)의 개발)

  • Lee, Jin-Young;Kim, Bo-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2412-2418
    • /
    • 2009
  • As an astonishing progress of FTTH infrastructure, the new technologies have been widely studied to use the tantalizing benefits of high bandwidth in fiber optic cable. In this paper, a new VONU is presented to perform all necessary optical functions. It can converts digital and analog CATV signals and satellite-based signal transmitted via one fiber optic cable to electrical signals (electric lights). However, most previous VONU systems have the problems such as interference between difference services, signal distortion, and noise increasing rate. These problems cause the quality deterioration in broadcasting. Therefore, we suggest the new VONU system to solve all problems listed above. In addition, we show that how our system performs well by measuring the real data with implemented system.

Annular ring slot antenna with a variable circular polarized mode characteristic (가변 원형편파 모드 특성을 갖는 원형 링 슬롯 안테나)

  • Kim, Yong-Jin;Kim, Jung-Han;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.78-84
    • /
    • 2008
  • In this paper, the reconfigurable annular ring slot antenna with circular polarization diversity is proposed for SDMB(Satellite Digital Multimedia Broadcasting) system. The proposed antenna consists of a ring slot with four tuning stubs. Four PIN diodes are attached to switch circular polarization diversity. By switching the diodes ON or OFF, the proposed antenna can be operated either RHCP mode or LHCP mode. The experimental result shows that the proposed antenna has an impedance bandwidth(VSWR${\leq}$2) of 570MHz(2.47-3.04GHz) at LHCP mode, an impedance bandwidth (VSWR${\leq}$2) of 560MHz(2.45-3.01GHz) at RHCP mode, a maximum gai of 3.1dBi at RHCP mode, 4.76dBi at LHCP mode. The 3dB CP bandwidth of about 100MHz at both RHCP and LHCP mode is achieved at the center frequency 2.63GHz. The proposed antenna is suitable for application such as mobile satellite communications, WLAN(Wireless Local Area Networks), and broadband wireless communication systems.

Multiple Differential Feedback Detection of M-ary DPSK Signal in Shadowed Rician Fading Channel (쉐도우 라이시안 페이딩 채널에서 M-ary DPSK 신호의 다중 차동 궤환 검파)

  • 박문수;김환용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • M-ary differential phase shift keying(DPSK)is a bandwidth efficient digital modulation technique and recently has attracted increased attention in mobile satellite communication application where the available radio bandwidth is limited. Coherent detection offers good BER performance in AWGN channel. However, it requires long acquisition times in fading environment. In this paper, we analyze the BER performance of M-ary DPSK signal using the Multiple Differ- ential Feedback Detection(MDFD) technique in Rician fading and shadowed Rician fading channel. MDFD is an efficient scheme to decrease the performance gap between differential and coherent reception by increasing the complexity of the conventional differential receiver to some extent. Compared to the multiple symbol maximum likelihood detection technique, the multiple differential feedback detection technique has a much simpler structure for hardware implementation. Espe- cially, this technique has application to land mobile satellite channel which can vary in time and space between AWGN and rapidly fading channel.

  • PDF

Hardware Design of SNR Estimator for Adaptive Satellite Transmission System (적응형 위성 전송 시스템을 위한 신호 대 잡음비 추정 회로 구현)

  • Lee, Jae-Ung;Kim, Soo-Seong;Park, Eun-Woo;Im, Chae-Yong;Yeo, Sung-Moon;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.148-158
    • /
    • 2008
  • This paper proposes an efficient signal to noise ratio (SNR) estimation algorithm and its hardware implementation for adaptive transmission system using M-ary modulation scheme. In this paper, we present the implementation results of the proposed algorithm for the second generation digital video broadcasting via satellite (DVB-S2) system, and the proposed algorithm can be tailored to the other communication systems using adaptive transmissions. We built a look-up table (LUT) using the theoretical background of the received signal distribution, and by using this LUT we need just two comparators and a counter for the hardware implementation. For this reason, the hardware of the proposed scheme produces accurate estimation results even with extremely low complexity. The simulation results investigated in this paper reveal that the proposed method can produce estimation results within the specified SNR range in the DVB-S2 system, and it requires a few hundreds of samples for average estimation error of about 1 dB.

Development of the GOCI Radiometric Calibration S/W (정지궤도 해양위성(GOCI) 복사보정 S/W 개발)

  • Cho, Seong-Ick;Ahn, Yu-Hwan;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.167-171
    • /
    • 2009
  • 정지궤도에서는 세계 최초의 해양관측위성으로 개발된 정지궤도 해양위성(GOCI, Geostationary Ocean Color Imager)은 통신해양기상위성(COMS, Communication, Ocean and Meterological Satellite)의 탑재체로서 2009년말 발사 예정이다. 정지궤도 해양위성의 복사보정은 센서의 전기적 특성에 의한 잡음을 제거하기 위한 암흑전류 교정(Dark Current Correction)을 먼저 수행한 다음, 주운영지상국인 해양위성센터(KOSC, Korea Ocean Satellite Center)에서 수신된 위성의 원시자료의 Digital Number(DN)를 실제 해양원격탐사에서 이용하는 물리량인 복사휘도(Radiance, $W/m^2/{\mu}m/sr$)로 변환하는 복사보정을 수행한다. 정확도 높은 복사보정을 수행하기 위해서는 기준광원의 복사휘도와 센서의 물리적 특성을 정확하게 알아야 한다. 정지궤도 해양위성 궤도상 복사보정(on-orbit radiometric calibration)에서는 태양이 기준광원이기 때문에, 기준 태양복사모델(Thuillier 2004 Solar Irradiance Model)에서 지구-태양간 거리 변화(1년 주기)를 보정한 태양의 방사도 (Irradiance)를 이용하고, 태양입사각에 대한 태양광 확산기의 감쇄 특성 변화를 고려하여 센서에 입력되는 복사휘도를 계산한다. 센서의 물리적 특성으로 인한 복사보정의 오차를 줄이기 위해 우주방사선 및 우주먼지(space debris)로 인해 위성 운용기간 중 그 특성이 저하되는 태양광 확산기(solar Diffuser)의 특성변화를 모니터링하기 위한 DAMD(Diffuser Aging Monitoring Device)를 이용한다. 정지궤도 해양위성 주관운영기관인 한국해양연구원의 해양위성센터에서는 정지궤도 해양위성 복사보정을 수행하기 위한 S/W를 통신해양기상위성 자료처리시스템 개발사업의 일환으로 개발하였으며, 관련 성능 시험을 수행하고 있다.

  • PDF