• Title/Summary/Keyword: Digital Map 2.0

Search Result 164, Processing Time 0.029 seconds

Making Method of Deterioration Map and Evaluation Techniques of Surface and Three-dimensional Deterioration Rate for Stone Cultural Heritage (석조문화유산의 손상지도 제작방법과 표면 및 3차원 손상율 평가기법)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.3
    • /
    • pp.251-260
    • /
    • 2011
  • This study focus on the suggestion of standard legend, the process system on making method of deterioration map, the development of crack index (CI), and the evaluation techniques of surface and 3D deterioration rate for stone cultural heritage. The standard legends of deterioration forms were made using a common graphic program after crack, blistering, scaling, break-out, granular disintegration, and perforation were subdivided. The deterioration map improved accuracy and reliability on deterioration range using 3D digital restoration and high resolution photograph mapping technique. Also, quantitative deterioration evaluation of stone cultural heritage was carried out developing the crack index, and the 3D deterioration rate of a break-out part was calculated by virtual restoration modeling. As a quantitative deterioration evaluation of Magoksa Temple stone pagoda based on the results described above, the north face showed high deterioration rate of bursting crack (1.70), hair crack (1.34), scaling (20.2%) and break out (13.0%), and the 3D deterioration rate of first roof stone was 6.7%.

LPM-Based Digital Watermarking for Forgery Protection in Printed Materials (인쇄물의 위조 방지를 위한 LPM기반의 디지털 워터마킹)

  • Bae Jong-Wook;Lee Sin-Joo;Jung Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1510-1519
    • /
    • 2005
  • We proposed a digital watermarking method that it is possible to identify the copyright because the watermark is detected in the first print-scan and to protect a forgery because the watermark is not detected in the second print-scan. The proposed algorithm uses LPM and DFT transform for the robustness to the distortion of pixel value and geometrical distortion. This methods could improve watermark detection performance and image quality by selecting maximum sampling radius in LPM transform. After analyzing the characteristics of print-scan process, we inserted the watermark in the experimentally selected frequency bands that survives robustly to the first print-scan and is not detected in the second print-scan, using the characteristic of relatively large distortion in high frequency bands of DFT As the experimental result, the original proof is possible because average similarity degree 5.13 is more than the critical value 4.0 in the first print-scan. And the detection of forgery image is also possible because average similarity degree 2.76 is less than the critical value 4.0 in the second print-scan.

  • PDF

Observation on the Shoreline Changes Using Digital Aerial Imagery for Bangamoeri Beaches (디지털항공영상을 활용한 방아머리 해빈의 해안선 변화 관측)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.971-980
    • /
    • 2017
  • In this research, it was presented that the strategic approach for the long-term shoreline changes using historic digital aerial images can be effective for the analysis on the bangameori beach, west coast of South Korea. For this purpose, we collected several historic digital aerial images over 9 years in the research filed and conducted GPS-VRS surveying for GCP (Ground Control Point) acquisition. Also we collected existing two dimensional shoreline digital map which was published by KHOA (Korea Hydrographic and Oceanographic Agency) in the year 2013. With these multi data sets, we provided quantitative analysis on coastal erosion using the long-term shoreline changes in the beach. Also, As the results it was found that 2m sea level was retreated in the research period with maximum 0.31m length.

A study on the realtime renewal and update of digital map using general survey (일반측량 성과도를 활용한수치지도의 실시간 수정갱신 체계화 연구)

  • Lee Sang-Gil;Kwon Jay-Hyoun;Yang Hyo-Jin;Cho Seong-Kil
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2006.05a
    • /
    • pp.146-151
    • /
    • 2006
  • 현재 국가지리정보유통망을 통해 유통되고 있는 수치지도(Digital map)는 대부분 항공 측량사진(Air survey Photographs)이나 위성영상(Satellite images)을 통해 취득된 토지 피복의 형상을 기반으로 제작된 지도들이다. 정사사진으로부터 취득된 지형정보를 기호화, 단순화한 수치지도는 실제 사물의 형태와 많은 차이가 있어 지형과 시설물의 변이를 사실대로 반영하지 못한다. 특히 최근 들어 지하시설물이나 건축기술의 발달로 층별 구조가 다양해진 건축물의 형태 등은 정사사진으로는 식별이 불가능하고 건물의 경우 지붕의 형태로 묘사되는 등 표현에 한계가 있다. 도심지역을 대상으로 제작된 1/1,000수치지형도나 일부 지자체나 공공기관 등에서 제작된 $1/500{\sim}1/2,500$ 수치지형도는 상세한 지형정보를 포함하고 있는 높은 정밀도의 수치지도이지만, 도시지역의 변이가 빠르게 일어나고 있기 때문에 자료 신뢰성과 최신성을 유지하는데 한계가 있다. 따라서 본 연구는 현지조사나 측량에 의존하고 있는 정사사진으로부터 취득이 불가능한 지형자료의 취득이나 수년단위인 갱신주기의 한계를 극복하고 실시간으로 수치지도를 수정갱신 할 수 있는 대안으로 일반측량성과도의 활용방안을 제시하고자 한다. 일반측량업에서 생산되는 일반측량성과도는 임시 도근점에 의해 측량을 실시하고 지적경계점과 현황기지점을 도해법에 의해 지적도와 중첩시켜 제작한 측량도로서, 일반측량 성과도에 절대좌표체계를 부여하고 수치지도와 매칭 기법을 제시함으로서 경제적이고 신속한 실시간 수치지도 수정갱신체계를 확립할 수 있고, 자료의 공유함으로써 중복측량을 방지할 수 있다.보 등)를 활용, 구축된다. 교통분석용 네트워크는 구축시점에 따라 현재 및 장래 네트워크로 구분되며 장래 네트워크는 기준년도부터 2031년까지 5년 단위로 계획된 장래도로를 반영하여 구축된다. 교통주제도 및 교통분석용 네트워크는 국가교통DB구축사업을 통해 구축된 자료로서 교통체계효율화법 제9조의4에 따라 공공기관이 교통정책 및 계획수립 등에 활용할 수 있도록 제공하고 있다. 건설교통부의 승인절차를 거쳐 제공하며 활용 후에는 갱신자료 및 활용결과를 통보하는 과정을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의

  • PDF

Compensation of the Error Rate for the Non-invasive Sphygmomanometer System Using a Tactile Sensor

  • Jeong, In-Cheol;Choi, Yoo-Nah;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.136-141
    • /
    • 2007
  • The Purpose Of This Paper Is To Use A Tactile Sensor To Compensate The Error Rate. Most Automated Sphygmomanometers Use The Oscillometric Method And Characteristic Ratio To Estimate Systolic And Diastolic Blood Pressure. However, Based On The Fact That Maximum Amplitude Of The Oscillometric Waveform And Characteristic Ratio Are Affected By Compliance Of The Aorta And Large Arteries, A Method To Measure The Artery Stiffness By Using A Tactile Sensor Was Chosen In Order To Integrate It With The Sphygmomanometer In The Future Instead Of Using Photoplethysmography. Since Tactile Sensors Have Very Weak Movements, Efforts Were Made To Maintain The Subject's Arm In A Fixed Position, And A 40hz Low Pass Filter Was Used To Eliminate Noise From The Power Source As Well As High Frequency Noise. An Analyzing Program Was Made To Get Time Delay Between The First And Second Peak Of The Averaged Digital Volume Pulse(${\Delta}t_{dvp}$), And The Subject's Height Was Divided By ${\Delta}t_{dvp}$ To Calculate The Stiffness Index Of The Arteries($Si_{dvp}$). Regression Equations Of Systolic And Diastolic Pressure Using $Si_{dvp}$ And Mean Arterial Pressure(Map) Were Computed From The Test Group (60 Subjects) Among A Total Of 121 Subjects(Age: $44.9{\pm}16.5$, Male: Female=40:81) And Were Tested In 61 Subjects To Compensate The Error Rate. Error Rates Considering All Subjects Were Systolic $4.62{\pm}9.39mmhg$, And Diastolic $14.40{\pm}9.62mmhg$, And Those In The Test Set Were $3.48{\pm}9.32mmhg,\;And\;14.34{\pm}9.67mmhg$ Each. Consequently, Error Rates Were Compensated Especially In Diastolic Pressure Using $Si_{dvp}$, Various Slopes From Digital Volume Pulse And Map To Systolic-$1.91{\pm}7.57mmhg$ And Diastolic $0.05{\pm}7.49mmhg$.

A Study on the Habitat Mapping of Meretrix lyrata Using Remote Sensing at Ben-tre Tidal Flat, Vietnam (원격탐사를 활용한 베트남 Ben-tre 갯벌의 Meretrix lyrata 서식지 매핑 연구)

  • Hwang, Deuk Jae;Woo, Han Jun;Koo, Bon Joo;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.975-987
    • /
    • 2021
  • Potential habitat mapping of Meretrix lyrata which is found in large parts of South East Asian tidal flat was carried out to find out causes of collective death. Frequency Ratio (FR) method, one of geospatialstatistical method, was employed with some benthic environmental factors; Digital elevation model (DEM) made from Landsat imagery, slope, tidal channel distance, tidal channel density, sedimentary facesfrom WorldView-02 image. Field survey was carried out to measure elevation of each station and to collect surface sediment and benthos samples. Potential habitat maps of the all clams and the juvenile clams were made and accuracy of each map showed a good performance, 76.82 % and 69.51 %. Both adult and juvenile clams prefer sand dominant tidal flat. But suitable elevation of adult clams is ranged from -0.2 to 0.2 m, and that of juvenile clams is ranged from 0 to 0.3 m. Tidal channel didn't affect the habitat of juvenile clams, but it affected the adult clams. In the furtherstudy, comparison with case of Korean tidal flat will be carried out to improve a performance of the potential habitat map. Change in the benthic echo-system caused by climate change will be predictable through potential habitat mapping of macro benthos.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

1/10,000 Scale Digital Mapping using High Resolution Satellite Images (고해상도 위성영상을 이용한 축척 1/10,000 수치지도 제작)

  • Lee, Byung-Hwan;Kim, Jeong-Hee;Park, Kyung-Hwan;Chung, Il-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.2
    • /
    • pp.11-23
    • /
    • 2000
  • The subjects of this study are to examine and to apply the methods of making 1 : 10,000 scale digital maps using Russian's 2 m resolution satellite images of Alternative and 8 m resolution stereo satellite images of MK-4 for the Kyoha area of Paju-city where aerial-photo surveying is not possible. A digital elevation model (DEM) was calculated from MK-4 images. With this DEM, the Alternative images were orthorectified. Ground control points (GCP) were acquired from GPS surveyings and were used to perform geometric corrections on Alternative images. From field investigation, thematic attributes are digitized on the monitor. RMS errors of the planar and vertical positions are estimated to ${\pm}0.4$ m and ${\pm}15$ m, respectively. The planar accuracy is better than an accuracy required by NGIS (national GIS) programs. Local information from field investigation was added and the resulting maps should be good as base maps for, such as, regional and urban plannings.

  • PDF

Analysis of Accuracy and DTM Generation Using Digital Photogrammetry (수치사진 측량을 이용한 DTM 추출 및 정확도 분석)

  • Park, Jin-Seong;Hong, Sung-Chang;Sung, Jae-Ryeol;Lee, Byung-Hwan
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.301-306
    • /
    • 2010
  • Recently GIS is not only displaying and servicing data on the 2D, but also is changing rapidly to display and service 3D data. Also 3D related technology is developing actively. For display of 3D data, terrain DTM has become a basis. Generally, to acquire DTM, users are using LIDAR data or digital map's contour line. However, if using these data for producing DTM, users need to additional cost and data lead time. And hard to update terrain data. For possibility of solving these problem, this study did DTM extraction with automatic matching for aerial photograph, and analysed the result with measurement of Orthometric height and excuted accuracy through DTM(which extracted from digital photogrammetric technique). As a result, we can get a high accuracy of RMSE (0.215m).

  • PDF

Process of Digital Elevation Model Using RC Helicopter Surveying System (무선조정 헬리콥터 사진측량시스템을 이용한 수치표고모형 작성)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.111-116
    • /
    • 2008
  • The study installed non metric camera which was a 10 Mega Pixel camera in RC Helicopter. And the study controlled images hotographed in air on land, considering their overlap. The study could express DEM by abstracting TIN from the acquired images through image registration. Also, the study compared and examined accuracy between reference point and check point observed by Total Station which was a conventional type of survey. As the results, the study could get errors of $-0.194{\sim}0.224\;m$ on X axis, $-0.088{\sim}0.180\;m$ on Y axis and $-0.286{\sim}0.285\;m$ on Z axis. Expressing an error's RMSE in the checkpoint, the study could get of 0.021388 m on X axis, 0.015285 m on Y axis and 0.041872 m on Z axis. It is judged that the above photographing and analyzing technique are better than the existing Total Station to acquire more terrain elevation data.