• Title/Summary/Keyword: Digital I&C system

Search Result 200, Processing Time 0.028 seconds

Electromagnetic Interference Test Result Analysis of Integral Reactor Digital I&C System (일체형 원자로 디지털 계측제어계통 전자파 장애 시험결과 분석)

  • Lee, Joon-Koo;Sohn, Kwang-Young;Park, Hee-Seok;Park, Heui-Yun;Koo, In-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.213-218
    • /
    • 2003
  • Because of the development of digital technology, modern digital instrumentation & control systems are being innovativly developed in industrial plants. Whereas, many analog systems are still being used in nuclear plants, because of the demerits of digital equipment. As known, the demerits of digital equipment are the uncertainty and weaknesses in ambient environments such as smoke & electromagnetic interference In an Integral Reactor, a digital I&C system will be composed of microprocessor, memory and network card. Designers will apply new technique for digital equipment. Thus, it is important for digital I&C systems to operate according to designed functions & performance in the ambient environments during a life cycle. Digital I&C systems should have tolerance in such environments and environment qualification should be concluded To acquire electromagnetic interference qualification of digital equipment, this paper suggests an EMI test requirement. Designers should consider the electromagnetic compatibility and test digital equipment according to each test procedure. This paper involves an EMI test requirement and the results analysis of EUT(Equipment Under Test). Test result analysis will be used as electromagnetic compatibility design guides for Integral Reactor I&C systems.

  • PDF

Digital Asset Analysis Methodology against Cyber Threat to Instrumentation and Control System in Nuclear Power Plants (원자력발전소의 디지털계측제어시스템의 사이버보안을 위한 디지털 자산분석 방법)

  • Koo, In-Soo;Kim, Kwan-Woong;Hong, Seok-Boong;Park, Geun-Ok;Park, Jae-Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.839-847
    • /
    • 2011
  • Instrumentation & Control(I&C) System in NPP(Nuclear Power Plant) plays a important role as the brain of human being, it performs protecting, controling and monitoring safety operation of NPP. Recently, the I&C system is digitalized as digital technology such as PLC, DSP, FPGA. The different aspect of digital system which use digital communication to analog system is that it has potential vulnerability to cyber threat in nature. Possibility that digital I&C system is defected by cyber attack is increasing day by day. The result of cyber attack can be adverse effect to safety function in NPP. Therefore, I&C system required cyber security counter-measures that protect themselves from cyber threat efficiently and also cyber security design should be taken into consideration at concept stage in I&C system development process. In this study, we proposed the digital asset analysis method for cyber security assessment of I&C system design in NPP and we performed digital asset analysis of I&C system by using the proposed method.

Development of Reliability Evaluation System for I&C System Upgrade (원자력발전소 I&C계통 설비개선을 위한 평가시스템 개발)

  • Chung, Hak-Young;Kang, Hyeon-Tae;Sung, Chan-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1852-1858
    • /
    • 2007
  • To Increase availability and to enhance the safety, the modernization of Instrumentation & Control (I&C) systems is considered. The extended use of the digital technology lets nuclear power plants(NPPs) to replace their old analog systems with some proven digital systems. To adapt digital equipment to plants effectively and systematically, however, there must be an essential prerequisite, which is to evaluate current I&C equipment. This paper shows a practical methodology to evaluate the current status and reliability of I&C systems of NPPs using Reliability Evaluation System(RES) before performing upgrades or replacements for systems. The proposed method was applied to KORI Unit 2. The proposed method shows the current status of operating I&C systems effectively for upgrading I&C systems.

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

ATWS Frequency Quantification Focusing on Digital I&C Failures

  • Kang Hyun Gook;Jang Seung-Cheol;Lim Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.184-195
    • /
    • 2004
  • The multi-tasking feature of digital I&C equipment could increase risk concentration because the I&C equipment affects the actuation of the safety functions in several ways. Anticipated Transient without Scram (ATWS) is a typical case of safety function failure in nuclear power plants. In a conventional analysis, mechanical failures are treated as the main contributors of the ATWS. This paper quantitatively presents the probability of the ATWS based on a fault tree analysis of a Korea Standard Nuclear Power Plant is also presented. An analysis of the digital equipment in the digital plant protection system. The results show that the digital system severely affects the ATWS frequency. We also present the results of a sensitivity study, which show the effects of the important factors, and discuss the dependency between human operator failure and digital equipment failure.

Digital Control System Validation using the Simulator Models for 500MW Standard Type Fossil Power Plant (500MW급 표준화력발전소 시뮬레이터 모델을 이용한 디지털 제어시스템 검증)

  • Suh, Jeong-Kwan;Lee, Myeong-Soo;Hong, Jin-Hyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.71-79
    • /
    • 2010
  • The simulator models for 500MW fossil power plant have been developed, and interconnected with the turbine control system to test and validate the digital instrumentation & control (I&C) systems before they are implemented in operating power plants. When the performance of a selected digital I&C system is tested, the corresponding simulator model is replaced by the plant digital I&C systems which is considered as a non-tunable system. The input/out variables of simulator models and control systems were mapped using the LabView in interface systems. This paper describes the interconnection method between the simulator model and the digital I&C system, and summarizes the validation test results performed at the condition of steady-state operation, normal evolution, and malfunction. The integrated validation method of digital I&C systems using the simulator models showed that the simulator can be used as a test bed for the implementation of digital I&C systems in power plants.

Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment

  • Kim, Man Cheol;Seo, Jeongil;Jung, Wondea;Choi, Jong Gyun;Kang, Hyun Gook;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.692-701
    • /
    • 2019
  • Recently, instrumentation and control (I&C) systems in nuclear power plants have undergone digitalization. Owing to the unique characteristics of digital I&C systems, the reliability analysis of digital systems has become an important element of probabilistic safety assessment (PSA). In a reliability analysis of digital systems, fault-tolerant techniques and their effectiveness must be considered. A fault injection experiment was performed on a safety-critical digital I&C system developed for nuclear power plants to evaluate the effectiveness of fault-tolerant techniques implemented in the target system. A software-implemented fault injection in which faults were injected into the memory area was used based on the assumption that all faults in the target system will be reflected in the faults in the memory. To reduce the number of required fault injection experiments, the memory assigned to the target software was analyzed. In addition, to observe the effect of the fault detection coverage of fault-tolerant techniques, a PSA model was developed. The analysis of the experimental result also can be used to identify weak points of fault-tolerant techniques for capability improvement of fault-tolerant techniques

Measurement of a Diagnostic Coverage for a Digital Signal Processor Board Using an FMEDA (FMEDA를 활용한 디지털 신호처리기 보드의 진단 유효범위의 측정)

  • Keum, Jong-Yong;Suh, Yong-Suk;Lee, Jun-Koo;Park, Je-Yun
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Good diagnostics improves both the safety and system unavailability of digital safety systems. The measure of a diagnostic capability is called the Coverage Factor. Because the Failure Modes, Effects and Diagnostic Analysis (FMEDA) provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a component, the FMEDA can be used as a useful tool to calculate it. Through performing FMEDA on a digital signal processor (DSP) board used in a digital safety system, it is shown that some components of the DSP board can be replaced or improved to satisfy the required diagnostic coverage. That is, the FMEDA can serve as a useful verification tool to design a diagnostic capability for the DSP board.

  • PDF

Cell Interference Analysis and Link Budget for Output Power of Base Station in KOREA Environment of Digital MMDS (디지털 MMDS 방식의 국내환경에서 기지국 송신출력에 따른 링크버짓 및 셀 간섭 분석)

  • Cho, Byung-Lok
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.439-444
    • /
    • 2002
  • In this paper, we present both the link budget analysis according to system parameters and the cell coverage according to transmitter power and modulation scheme of digital MMDS among the wireless CATV system methods which is bated on the wireless internet service. Also, in this paper, we present C/I and number of subscriber according to splitting cell. In this paper, the cell coverage of which obtain the results according to both transmitter power from 0dBW to -9dBW and modulation scheme of QPSK, 16QAM and 64QAM based on link budget was analysis for system parameter of digital MMDS was able to provide from maximum 134km to minimum 4.3km. Also, in this paper, the number of subscriber of which obtain the results according to polarization wave, frequency of frequency reuse and C/I in 4. 6 and 8 sectors was able to provide from maximum 5,200DSI to minimum 1,300DSI.

A High-speed Digital Laser Grating Projection System for the Measurement of 3-dimensional Shapes

  • Park, Yoon-Chang;Park, Chul-Geun;Ahn, Seong-Joon;Kang, Moon-Ho;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • In the non-contact 3-dimensional (3D) shape measurements, the fringe pattern projection method based on the phase-shifting technique has been considered very effective for its high speed and accuracy. The digital fringe projector in particular has great flexibility in generating fringe patterns since the patterns can be controlled easily by the computer program. In this work, we have developed a high-speed digital laser grating projection system using a laser diode and a polygon mirror, and evaluated its performance. It has been demonstrated that all the optical measurements required to find out the profile of a 3D object could be carried out within 31 ms, which confirmed the validity of our 3D measurement system. The result implies the more important fact that the speed in 3D measurement can be enhanced remarkably since, in our novel system, there is no device like a LCD or DMD whose response time limits the measurement speed.