• Title/Summary/Keyword: Digital Detector

Search Result 553, Processing Time 0.018 seconds

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS (충적층의 정밀 선구조 추출을 위한 위성영상과 GIS 기법의 활용에 관한 연구)

  • 이수진;석동우;황종선;이동천;김정우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.363-368
    • /
    • 2003
  • We have successfully developed a more effective algorithm to extract the lineament in the area covered by wide alluvial deposits characterized by a relatively narrow range of brightness in the Landsat TM image, while the currently used algorithm is limited to the mountainous areas. In the new algorithm, flat areas mainly consisting of alluvial deposits were selected using the Local Enhancement from the Digital Elevation Model (DEM). The aspect values were obtained by 3${\times}$3 moving windowing of Zevenbergen & Thorno's Method, and then the slopes of the study area were determined using the aspect values. After the lineament factors in the alluvial deposits were revealed by comparing the threshold values, the first rank lineament under the alluvial deposits were extracted using the Hough transform In order to extract the final lineament, the lowest points under the alluvial deposits in a given topographic section perpendicular to the first rank lineament were determined through the spline interpolation, and then the final lineament were chosen through Hough transform using the lowest points. The algorithm developed in this study enables us to observe a clearer lineament in the areas covered by much larger alluvial deposits compared with the results extracted using the conventional existing algorithm. There exists, however, some differences between the first rank lineament, obtained using the aspect and the slope, and the final lineament. This study shows that the new algorithm more effectively extracts the lineament in the area covered with wide alluvlal deposits than in the areas of converging slope, areas with narrow alluvial deposits or valleys.

  • PDF

Development of a Small Gamma Camera Using NaI(T1)-Position Sensitive Photomultiplier Tube for Breast Imaging (NaI (T1) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, Jong-Ho;Choi, Yong;Kwon, Hong-Seong;Kim, Hee-Joung;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Moon-Hae;Joo, Koan-Sik;Kim, Byuug-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 1998
  • Purpose: The conventional gamma camera is not ideal for scintimammography because of its large detector size (${\sim}500mm$ in width) causing high cost and low image quality. We are developing a small gamma camera dedicated for breast imaging. Materials and Methods: The small gamma camera system consists of a NaI (T1) crystal ($60 mm{\times}60 mm{\times}6 mm$) coupled with a Hamamatsu R3941 Position Sensitive Photomultiplier Tube (PSPMT), a resister chain circuit, preamplifiers, nuclear instrument modules, an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a standard resistive charge division which multiplexes the 34 cross wire anode channels into 4 signals ($X^+,\;X^-,\;Y^+,\;Y^-$). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated ana digitized via triggering signal and used to localize the position of an event by applying the Anger logic. Results: The intrinsic sensitivity of the system was approximately 8,000 counts/sec/${\mu}Ci$. High quality flood and hole mask images were obtained. Breast phantom containing $2{\sim}7 mm$ diameter spheres was successfully imaged with a parallel hole collimator The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We have succesfully developed a small gamma camera using NaI(T1)-PSPMT and nuclear Instrument modules. The small gamma camera developed in this study might improve the diagnostic accuracy of scintimammography by optimally imaging the breast.

  • PDF

A Study on Public Nuisance in Seoul, Pusan and Daegu Cities Part I. Survey on Air Pollution and Noise Level (공해(公害)에 관(關)한 조사연구(調査硏究) 제일편(第一編) : 서울, 부산(釜山), 대구(大邱) 지역(地域)의 대기오염(大氣汚染) 및 소음(騷音)에 관(關)한 비교조사(比較調査) 연구(硏究))

  • Cha, Chul-Hwan;Shin, Young-Soo;Lee, Young-Il;Cho, Kwang-Soo;Choo, Chong-Yoo;Kim, Kyo-Sung;Choi, Dug-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.4 no.1
    • /
    • pp.41-64
    • /
    • 1971
  • During the period from July 1st to the end of November 1970, a survey on air pollution and noise level was made in Seoul, Pusan and Taegu, the three largest cities in Korea. Each city was divided into 4-6 areas; the industrial area, the semi-industrial area, the commercial area, the residential area, the park area and the downtown area. Thirty eight sites were selected from each area. A. Method of Measurement : Dustfall was measured by the Deposit Gauge Method, sulfur oxides by $PbO_2$ cylinder method, suspended particles by the Digital Dust Indicator, Sulfur dioxide ($SO_2$) and Carbon Monoxide (CO) by the MSA & Kitakawa Detector and the noise levels by Rion Sound Survey meter. B. Results: 1. The mean value of dustfall in 3 cities was $30.42ton/km^2/month$, ranging from 8.69 to 95.44. 2. The mean values of dustfall by city were $33.17ton/km^2/month$ in Seoul, 32.11 in Pusan and 25.97 in Taegu. 3. The mean values of dustfall showed a trend of decreasing order of semi-industrial area, downtown area, industrial area, commercial area, residential area, and park area. 4. The mean value of dustfall in Seoul by area were $52.32ton/km^2/month$ in downtown, 50.54 in semi-industrial area, 40.37 in industrial area, 24,19 in commercial area, 16.25 in park area and 15.39 in residential area in order of concentration. 5. The mean values of dustfall in Pusan by area were $48.27ton/km^2/month$ in semi-industrial area, 36.68 in industrial area 25.31 in commercial area, and 18.19 in residential area. 6. The mean values of dustfall in Taegu by area were $36.46ton/km^2/month$ in downtown area, 33.52 in industrial area, 20.37 in commercial area and 13.55 in residential area. 7. The mean values of sulfur oxides in 3 cities were $1.52mg\;SO_3/day/100cm^2\;PbO_2$, ranging from 0.32 to 4.72. 8. The mean values of sulfur oxides by city were $1.89mg\;SO_3/day/100cm^2\;PbO_2$ in Pusan, 1.64 in Seoul and 1.21 in Taegu. 9. The mean values of sulfur oxides by area in 3 cities were $2.16mg\;SO_3/day/100cm^2\;PbO_2$ in industrial area, 1.69 in semi-industrial area, 1.50 in commercial area, 1.48 in downtown area, 1.32 in residential area and 0.94 in the park area, respectively. 10. The monthly mean values of sulfur oxides contents showed a steady increase from July reaching a peak in November. 11. The mean values of suspended particles was $2.89mg/m^3$, ranging from 1.15 to 5.27. 12. The mean values of suspended particles by city were $3.14mg/m^3$ in Seoul, 2.79 in Taegu and 2.25 in Pusan. 13. The mean values of noise level in 3 cities was 71.3 phon, ranging from 49 to 99 phon. 14. The mean values of noise level by city were 73 phon in Seoul, 72 in Pusan, and 69 in Taegu in that order. 15. The mean values of noise level by area in 3 cities showed a decrease in the order of the downtown area, commercial area, industrial area and semi-industrial area, park area and residential area. 16. The comparison of the noise levels by area in 3 cities indicated that the highest level was detected in the downtown area in Seoul and Taegu and in the industrial area in Pusan. 17. The daily average concentration of sulfur dioxides ($SO_2$) in 3 cities was 0.081 ppm, ranging from 0.004 to 0.196. 18. The daily average concentrations of sulfur dioxides by city were 0.092 ppm in Seoul, 0.089 in Pusan and 0.062 in Taegu in that order. 19. The weekly average concentration of carbon monoxides(CO) was 27.59 ppm. 20. The daily average concentrations of carbon monoxides by city were 33.37 ppm. in Seoul, 25.76 in Pusan and 23.65 in Taegu in that order. 21. The concentration of $SO_2$ and CO reaches a peak from 6 p. m. to 8 p. m. 22. About 3 times probably the daily average concentration of CO could be detected in the downtown area probably due to heavy traffic emission in comparison with that in the industial area. 23. As for daily variation of the concentration of $SO_2$ and CO it was found that the concentration maintains relatively higher value during weekdays in the industrial area and on the first part of the week in the downtown area.

  • PDF