• Title/Summary/Keyword: Digital Aerial Image

Search Result 262, Processing Time 0.024 seconds

Development of Module for Ortho photo Generating Using Aerial Photograph (항공사진을 이용한 정사투영영상생성 모듈 개발)

  • Yeu, Bock-Mo;Lee, Suk-Kun;Kim, Eui-Myoung;Min, Kyoung-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.45-58
    • /
    • 1998
  • Digital photogrammetry is growing today using inexpensive personal confuter and digital image Processing technique instead of expensive analytical plotter in data acquisition from aerial photograph. Ortho photo in replacement of paper map is indispensable in the application of Geo-Spatial Information System and research activities about it are active in the domestic domain. Also the availability of ortho photo is greatly various in existing related fields using topographic map and expected to be used for new technology in near future. For this purpose, design of each module for ortho photo has been carried out with digital map and image. It was shown that the batch program for ortho photo generation developed in this study, could be used effectively as an effective data acquisition method for GSIS.

  • PDF

Developing Operator and Algorithm for Road Automated Recognition (도로 자동인식을 위한 연산자 및 알고리즘 개발)

  • Lim, In-Seop;Choi, Seok-Keun;Lee, Jae-Kee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.41-51
    • /
    • 2002
  • Recently, many studies extracting the geography information using digital aerial image have been implemented. But it is very difficult that automatically recognizing objects using edge detection method on the aerial image, and so that work have practiced manually or semi-automatically. Therefore, in this study, we have removed impedimental elements for recognition using the image which overlapped the significant information bands of brightness-sliced aerial images, then have developed the algorithm which can automatically recognize and extract road information and we will try to apply that method when we develope a system. For this, first of all, we have developed the 'template conformal-transformation moving operator' for automatically recognizing crosswalk area from crosswalk band image and the 'window normal search algorithm' which is able to track road area based on long-side length of crosswalk, so that we have proposed the method that can extract directly the road information from the aerial image.

  • PDF

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

A Demonstration Construction of Sewerage Underground Facilities Map Based on Aerial Photograph (항공사진 기반 하수 지하시설물도 시범구축)

  • Min, Kwan-Sik;Choi, Min-Ho
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • This study attempts to establish sewerage underground facility map using aerial photograph with high readability and accessibility as an alternative of digital map and compilation cadastral map. A study on utility and consistency of established sewerage underground facility map in line with the current continuous cadastral map of underground facility was carried out. If underground facility map is established and utilized by converging digital image and compilation cadastral map, various spatial information analysis and systematic and integrated information utilization is available. The drawing of underground facility map using aerial photograph in this highly information-oriented society shall play a role in basic map for integrated control as an alternative of problems in the current drawing and designs created and managed by controlling institutions. In addition, the information of sewerage underground facility map using aerial photograph shall be used for establishing systematized urban planning and control.

Automatic Extraction of Building Height Using Aerial Imagery and 2D Digital Map (항공사진과 2차원 수치지형도를 이용한 건물 고도의 자동 추출)

  • Jin, Kyeong-Hyeok;Hong, Jae-Min;Yoo, Hwan-Hee;Yeu, Bock-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.65-69
    • /
    • 2005
  • Efficient 3D generation of cultural features, such as buildings in urban area is becoming increasingly important for a number of GIS applications. For reconstruction or 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly. In case of automatically extracting and reconstructing of building height using single aerial images or single satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches or integrating optical images and existing 2D GIS data(e.g. digital map) has been in progress. In this paper, we focused on extracting of building height by means or interest points and vortical line locus for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images(1/5,000) and existing digital map(1/1,000).

  • PDF

Estimating the Forest Micro-topography by Unmanned Aerial Vehicles (UAV) Photogrammetry (무인항공기 사진측량 방법에 의한 산림 미세지형 평가)

  • Cho, Min-Jae;Choi, Yun-Sung;Oh, Jae-Heun;Lee, Eun-Jai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2021
  • Unmanned aerial vehicles(UAV) photogrammetry provides a cost-effective option for collecting high-resolution 3D point clouds compared with UAV LiDAR and aerial photogrammetry. The main objectives of this study were to (1) validate the accuracy of 3D site model generated, and (2) determine the differences between Digital Elevation Model(DEM) and Digital Surface Model(DSM). In this study, DEM and DSM were shown to have varying degree of accuracy from observed data. The results indicated that the model predictions were considered tend to over- and under-estimated. The range of RMSE of DSM predicted was from 8.2 and 21.3 when compared with the observation. In addition, RMSE values were ranged from 10.2 and 25.8 to compare between DEM predicted and field data. The predict values resulting from the DSM were in agreement with the observed data compared to DEM calculation. In other words, it was determined that the DSM was a better suitable model than DEM. There is potential for enabling automated topography evaluation of the prior-harvest areas by using UAV technology.

Landscape Information Acquisition and Visualization Technique for Rural Landscape Planning (농촌마을 경관계획을 위한 경관자료의 수집과 가시화기법)

  • Han, Seung-Ho;Cho, Tong-Buhm
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.2 s.23
    • /
    • pp.35-42
    • /
    • 2004
  • This study aimed at establishing the multi-ranged approach on data acquisition technique for rural landscape planning, which tried categorization, grading and transferring of landscape elements in the more detailed level. For the systematic management of database for the topographic informations in the village level, a kind of the aerial photographing techniques with UAV(Unmanned Aerial Vehicle) was used and its resultant data for the landscape simulation of the rural village, which in turn helped the convenient approach to understanding of its comprehensive spatial structure. The image data from aerial photography was systematically processed through; First, after revision of the distorted one, the image map was adjusted with the topographical and cadastral maps. Second, the farm houses and buildings, and other facilities difficult to find out in the topographical map was digitally read from the adjusted image. The topographical landscape view of rural village was simulated on the base of DEM(Digital Elevation Model) and the 3-dimensional shapes of farm houses and buildings were automatically modelled using the input system developed by the author. In conclusion, the aerial image information adjusted with the edited maps could give more intuitive and detailed villagescape than the ordinary one and through landscape simulation of the rural village, its topography, features of houses/buildings and spatial distribution of land uses were effectively reproduced. And, by the linkage between field survey and photographed/simulated results of the typical landscape elements using hyper-link method, it would be expected to develop as an effective visualization technique of rural landscape.

The Insurance of Quality in Digital Aerial Photo Image (수치영상의 품질확보에 관한 연구)

  • Lee, Hyun-Jik;Park, Kyeong-Sik;Yong, Min;Hong, Soon-Heun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.3 s.21
    • /
    • pp.17-27
    • /
    • 2002
  • It is desirable to use a photogrammetric scanner to minimize the errors from the scanning procedure in case of building aerial photo image DB. The photogrammetric scanner, however, is highly expensive to have only limited number of scanners available, therefore the general-purpose scanners have been considered as an alternative. This study has mainly been focused to see the possibility of the general-purpose scanner to be used for scanning aerial photographs. For that, the analysis of the image coordinates were made as well as the accuracy evaluation of each phase. In addition to that, as the application of the orthophoto images has been increased, the magnitudes of the errors from the DEM generation and orthophoto projection were analyzed. Also, the calibration program was developed to verify the geometric distortion of the automatic scanner to contribute to enhance the quality of the aerial photo image DB.

  • PDF

Implementation of Digital Image Processing for Coastline Extraction from Synthetic Aperture Radar Imagery

  • Lee, Dong-Cheon;Seo, Su-Young;Lee, Im-Pyeong;Kwon, Jay-Hyoun;Tuell, Grady H.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.517-528
    • /
    • 2007
  • Extraction of the coastal boundary is important because the boundary serves as a reference in the demarcation of maritime zones such as territorial sea, contiguous zone, and exclusive economic zone. Accurate nautical charts also depend on well established, accurate, consistent, and current coastline delineation. However, to identify the precise location of the coastal boundary is a difficult task due to tidal and wave motions. This paper presents an efficient way to extract coastlines by applying digital image processing techniques to Synthetic Aperture Radar (SAR) imagery. Over the past few years, satellite-based SAR and high resolution airborne SAR images have become available, and SAR has been evaluated as a new mapping technology. Using remotely sensed data gives benefits in several aspects, especially SAR is largely unaffected by weather constraints, is operational at night time over a large area, and provides high contrast between water and land areas. Various image processing techniques including region growing, texture-based image segmentation, local entropy method, and refinement with image pyramid were implemented to extract the coastline in this study. Finally, the results were compared with existing coastline data derived from aerial photographs.

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.