• Title/Summary/Keyword: Diffusion-based Molecular Communication

Search Result 8, Processing Time 0.017 seconds

Quorum Sensing-Based Multiple Access Networks

  • Tissera, Surani;Choe, Sangho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.750-753
    • /
    • 2016
  • Quorum sensing (QS) is a bacterium-to-bacterium cell communication mechanism allowing bio-cell network construction but such mechanism is not well defined yet. We construct a QS-based multiple access network (MAN) and then numerically analyse its average uplink channel capacity as well as BER performance over diffusion-based 3-D molecular communication channels.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

A Study on the Efficient Concatenated Code on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에 효율적인 직렬 연결 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • In this paper, we propose an efficient concatenated code for both random and ISI errors on diffusion-based molecular communication channels. The proposed concatenated code was constructed by combining the ISI-mitigating code designed for ISI mitigation and the ISI-Hamming code strong against random errors, and the BER(bit error rate) performance was analyzed through simulation. In the case of the above M=1,200 channel environment, it was found that the error rate performance of the concatenated code follows the error rate performance of the ISI-mitigating code, which is strong against ISI, and follows the error rate performance of the ISI-Hamming code, which is strong against random errors, in the channel environment below M=600. In M=600~1,200, the concatenated code shows the best error rate performance among those of three codes, which is analyzed because it can correct both random errors and errors caused by ISI. In the following cases of below M=800, it can be seen that the error rate of the concatenated code and the ISI-mitigating code shows an error rate difference of about 1.0×10-1 on average.

Enhanced Inter-Symbol Interference Cancellation Scheme for Diffusion Based Molecular Communication using Maximum Likelihood Estimation

  • Raut, Prachi;Sarwade, Nisha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5035-5048
    • /
    • 2016
  • Nano scale networks are futuristic networks deemed as enablers for the Internet of Nano Things, Body area nano networks, target tracking, anomaly/ abnormality detection at molecular level and neuronal therapy / drug delivery applications. Molecular communication is considered the most compatible communication technology for nano devices. However, connectivity in such networks is very low due to inter-symbol interference (ISI). Few research papers have addressed the issue of ISI mitigation in molecular communication. However, many of these methods are not adaptive to dynamic environmental conditions. This paper presents an enhancement over original Memory-1 ISI cancellation scheme using maximum likelihood estimation of a channel parameter (λ) to make it adaptable to variable channel conditions. Results of the Monte Carlo simulation show that, the connectivity (Pconn) improves by 28% for given simulation parameters and environmental conditions by using enhanced Memory-1 cancellation method. Moreover, this ISI mitigation method allows reduction in symbol time (Ts) up to 50 seconds i.e. an improvement of 75% is achieved.

A Study on Hamming Codes for Mitigating ISI on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에서 ISI 완화를 위한 해밍 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this paper, in order to mitigate ISI(inter-symbol interference) in a diffusion-based molecular communication channel, an ISI Hamming code is proposed in which ISI characteristics are applied to a channel decoding algorithm. In order to prove the bit error rate performance of the proposed channel code, the bit error rate performance of the major channel codes applied to the molecular communication channel with ISI was compared and analyzed through simulation. From the simulation results, it can be seen that the bit error rate performance of the ISI Hamming code is the best when the number of radiated molecules is less than or equal to 1100. In addition, when the number of transmitted molecules is M=1000, the decoding method of the ISI Hamming code proposed in this paper has improved the bit error rate of approximately 5.9×10-5 compared to the Hamming code using only soft values. Compared with the ISI-mitigating channel code, which is effective for removing ISI in the molecular communication channel, the ISI Hamming code proposed in this paper is the most advantageous in a channel environment where the number of transmitted molecules is not big (M<1100). And we can see that the ISI-mitigating channel code is more advantageous when the number of transmitted molecules is large(M>1100).

A Study on the Decoding of Hamming Codes using Soft Values on the Molecular Communication Channel (분자통신 채널에서 소프트 값을 이용한 해밍부호의 복호에 대한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.338-343
    • /
    • 2020
  • In this paper, it was shown that the decoding method of Hamming codes using soft values can be applied to molecular communication channels. A soft value criterion that can be used for decoding of Hamming codes for a molecular communication channel was proposed, and it has been shown through simulation that the decoding method using these values can improve reliability even in the molecular communication channel. A diffusion-based molecular communication channel was assumed, and information symbols were transmitted using BCSK modulation. After demodulating the number of molecules absorbed by the receiver at each symbol interval with an appropriate threshold, the number of molecules is no longer used. In this paper, the BER performance of the decoder was improved by utilizing information on the number of molecules that are no longer used as soft values in the decoding process. Simulation was performed to confirm the improvement in BER performance. When the number of molecules per bit is 600, the error rate of the Hamming code (15,11) was improved about 5.0×10-3 to the error rate of the BCSK system without the Hamming code. It can be seen that the error rate of (15,11) Hamming code with the soft values was improved to the same extent. In the case of (7,4) Hamming code, the result is similar to that of (15,11) Hamming code. Therefore, it can be seen that the BER performance of the Hamming code can be greatly improved even in the molecular communication channel by using the difference between the number of molecules absorbed by the receiver and the threshold value as a soft value.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Thalamo-cortical system involving higher-order nuclei in patients with first-episode psychosis

  • Cho, Kang Ik K.;Kwak, Yoo Bin;Hwang, Wu Jeong;Lee, Junhee;Kim, Minah;Lee, Tae Young;Kwon, Jun Soo
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.427-428
    • /
    • 2018
  • Based on the piling reports of disruptions in the thalamus of patients with schizophrenia, the alteration in the thalamo-cortical system has been regarded as the core pathophysiology. As the thalamus is composed of distinctive nuclei with different cytoarchitecture and cortical connections, nuclei specific investigations have been actively conducted in post-mortem studies. In addition, the importance of early changes has been highlighted, which in turn has led to investigations of the thalamo-cortical system using non-invasive neuroimaging methods. From this perspective, the early structural changes in the thalamo-cortical system, such as the thalamo-cortical connection and nuclei specific microstructural changes (which are coherent with findings from post-mortem methods) will be briefly discussed. The main findings, which are the reduced thalamo-prefrontal connection and reduced microstructural complexity in the higher-order nuclei detected in first-episode psychosis patients, suggest the occurrence of early alterations within and between the communication hub of the brain and cortex. These findings suggest not only directions for further studies for unveiling the thalamo-cortical system related pathophysiology, but also the possibility of using the reduced microstructural complexity in the higher order nucleus as a biomarker for schizophrenia.