• Title/Summary/Keyword: Diffusion prealloyed Powder

Search Result 6, Processing Time 0.021 seconds

Rolling Contact Fatigue Property of Sintered and Carburized Compacts Made of Molybdenum Hybrid-alloyed Steel Powder

  • Unami, Shigeru;Ozaki, Yukiko;Uenosono, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.144-145
    • /
    • 2006
  • A developed molybdenum hybrid-alloyed steel powder is based on a molybdenum prealloyed steel powder to which molybdenum powder particles are diffusion bonded. The sintered compact made of this powder has a finer pore structure than that of the conventional molybdenum prealloyed steel powder, because the ferritic iron phase $({\alpha}-phase)$ with a high diffusion coefficient is formed in the sintering necks where molybdenum is concentrated resulting in enhanced sintering. The rolling contact fatigue strength of the sintered and carburized compacts made of this powder improved by a factor of 3.6 compared with that of the conventional powder due to the fine pore structures.

  • PDF

Manufacture of the Prealloyed Powder for Powder Metallurgy by the Ion-diffusion Process (이온확산법에 의한 분말야금용 합금강분의 제조)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Na, Jae-Hun;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • Cu, Ni, and Mo were ion-diffused into the pure steel powder in the aqueous solution of $(CuNO_3)_2$, $Ni(NO_3)_2)_2$, and $(NH_4)_6Mo_7O_{24}$, to form partial diffusion bond prealloyed steel powder. The mechanical properties, and compacting and sintering characteristics were investigated as a function of Cu. Ni and Mo contents. The results of the this research, it was found that the smallest change of size was observed, and the good degree of hardness and tensile strength was observed when 1.50wt%Cu, 1.75wt%Ni and 0.50wt%Mo was added each other. The powder metallurgy characteristics of partial diffusion bond prealloyed steel powder containing 1.50wt% of Cu, 1.75wt% of Ni and 0.5wt% of Mo were compared to those of distalloy $AB\textregistered$ which was manufactured in Hogani Corporation of Sweden. Partial diffusion bond prealloyed steel powder of this study had good degree of hardness and density, and its dimensional stability was same to that of pure steel powder. Under the same sintering density and temperature, the tensile strength of the ion powder from this research was $15~20Kg/\textrm{mm}^2$ larger than that of distalloy AB'. also the hardness was larger in the magnitude of Hv20-30. When the powder metallurgy heat-treated, hardness and tensile strength were substantially increased.

  • PDF

A Study on the Automobile Clutch Disc Spline Hub with High Toughness by Powder Metallurgy (분말 야금에 의한 고인성 자동차 Clutch Disc Spline Hub 개발에 관한 연구)

  • 허만대;장경복;강성수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 1998
  • Powder metallurgy processes are able to form Net-Shape products and have been widely used in the production of automobile parts to improve its productivity. However, because of pores in powder products, the toughness of powder products are generally poor. Therefore, forged products are used in parts which suffer severe fatigue loads. In this paper, the choice of powder materials and production processes such as mixing, compaction, sintering, heat treatment to produce automobile spline hub are studied. Three type of materials are selected and processed and its microstructure and properties are investigated by tensile test, compression ring test, and impact test. Materials and processing methods are selected from the results. Finally, experimental spline hubs are manufactured by selected processes from selected powders and proved by torsional durability test.

  • PDF

Study of Elastic Moduli of Sintered Low Alloy Steels by Acoustic Pulse Method

  • Hirose, Norimitsu;Oouchi, Kazuya;Fujiki, Akira;Asami, Junichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.387-388
    • /
    • 2006
  • The influence of porosity (P) on Young's modulus (E) and Poisson's ratio $(\upsilon)$ of sintered steels produced from four types of steel powders was investigated. The values of E and $(\upsilon)$ depend mainly on the value of P, and those were a little affected by alloying elements. The relationships between E, $(\upsilon)$, and P were described as following equations: $E\;=\;E_0{\cdot}(1\;-\;k_E{\cdot}P)^2$ and $\upsilon\;=\;({\upsilon}_0\;-\;\upsilon_{sub}){\cdot}(1\;-\;k_{\upsilon}{\cdot}P)2+\upsilon_{sub}$, where subscript 0 means P = 0, and $k_E,\;k_{\upsilon}$ and ${\upsilon}_{sub}$ are empirical constants. These approximate equations showed good agreement with empirical results.

  • PDF

The Effect of Elastic Anisotropy on the Shape of a Liquid Precipitate in a Wear-Resistant Fe-Base Alloy(Fe-5Cr- lMo-2Cu-0.5P-3C) (내마모 철계 소결합금(Fe-5Cr-lMo-2Cu-0.5P-3C)에서 정합변형이 액상석출물의 모양에 미치는 영향)

  • 신형상
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.60-65
    • /
    • 1994
  • When a commercial prealloyed Fe-powder(Fe-5Cr-lMo-2Cu-0.5P-3C) is liquid phase sintered at 116$0^{\circ}C$, liquid precipitates with various shapes form within solid grains during the initial stage of sintering. The shape of a liquid precipitate changes pith the increment of their size from sphere(with radius<0.3$\mu\textrm{m}$), a transient polyhedron with more than 7 faces(1~2 $\mu\textrm{m}$), cuboid(3~5 $\mu\textrm{m}$), and finally to sphere(>5 $\mu\textrm{m}$). The shapes of liquid precipitates closely resemble the growth shapes predicted on the basis of solid-liquid interfacial energy and the coherency strain energy with anisotropic elastic constants in the diffusion zone around the precipitates.

  • PDF

The Effect of Cr and Mo Additions on the Improvement in Microstructural Homogeneity and Mechanical Properties of Ni-containing P/M Steels

  • Wu, Ming-Wei;Hwang, Kuen-Shyang;Huang, Hung-Shang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.931-932
    • /
    • 2006
  • The microstructures of Ni-containing P/M steels produced by admixed powders or diffusion alloyed powders are usually heterogeneous. To improve the microstructure homogeneity, the effects of Mo and Cr additions in the prealloyed powder form were examined. The results showed that the microstructural homogeneity was improved and superior mechanical properties were achieved with increases in the alloy content, particularly for the Cr. Such a beneficial effect was attained due to the reduction of the repelling effect between Ni and C, as was demonstrated through thermodynamic analysis using the Thermo-Calc software.

  • PDF