• Title/Summary/Keyword: Diffusion magnetic resonance

Search Result 353, Processing Time 0.029 seconds

Detecting Peripheral Nerves in the Elbow using Three-Dimensional Diffusion-Weighted PSIF Sequences: a Feasibility Pilot Study

  • Na, Domin;Ryu, Jaeil;Hong, Suk-Joo;Hong, Sun Hwa;Yoon, Min A;Ahn, Kyung-Sik;Kang, Chang Ho;Kim, Baek Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: To analyze the feasibility of three-dimensional (3D) diffusion-weighted (DW) PSIF (reversed FISP [fast imaging with steady-state free precession]) sequence in order to evaluate peripheral nerves in the elbow. Materials and Methods: Ten normal, asymptomatic volunteers were enrolled (6 men, 4 women, mean age 27.9 years). The following sequences of magnetic resonance images (MRI) of the elbow were obtained using a 3.0-T machine: 3D DW PSIF, 3D T2 SPACE (sampling perfection with application optimized contrasts using different flip angle evolution) with SPAIR (spectral adiabatic inversion recovery) and 2D T2 TSE (turbo spin echo) with modified Dixon (m-Dixon) sequence. Two observers used a 5-point grading system to analyze the image quality of the ulnar, median, and radial nerves. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of each nerve were measured. We compared 3D DW PSIF images with other sequences using the Wilcoxon-signed rank test and Friedman test. Inter-observer agreement was measured using intraclass correlation coefficient (ICC) analysis. Results: The mean 5-point scores of radial, median, and ulnar nerves in 3D DW PSIF (3.9/4.2/4.5, respectively) were higher than those in 3D T2 SPACE SPAIR (1.9/2.8/2.8) and 2D T2 TSE m-Dixon (1.7/2.8/2.9) sequences (P < 0.05). The mean SNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR, but there was no difference between 3D DW PSIF and 2D T2 TSE m-Dixon in all of the three nerves. The mean CNR in 3D DW PSIF was lower than 3D T2 SPACE SPAIR and 2D T2 TSE m-Dixon in the median and ulnar nerves, but no difference among the three sequences in the radial nerve. Conclusion: The three-dimensional DW PSIF sequence may be feasible to evaluate the peripheral nerves around the elbow in MR imaging. However, further optimization of the image quality (SNR, CNR) is required.

Functional Magnetic Resonance Imaging in the Diagnosis of Locally Recurrent Prostate Cancer: Are All Pulse Sequences Helpful?

  • Liao, Xiao-Li;Wei, Jun-Bao;Li, Yong-Qiang;Zhong, Jian-Hong;Liao, Cheng-Cheng;Wei, Chang-Yuan
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1110-1118
    • /
    • 2018
  • Objective: To perform a meta-analysis to quantitatively assess functional magnetic resonance imaging (MRI) in the diagnosis of locally recurrent prostate cancer. Materials and Methods: A comprehensive search of the PubMed, Embase, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews was conducted from January 1, 1995 to December 31, 2016. Diagnostic accuracy was quantitatively pooled for all studies by using hierarchical logistic regression modeling, including bivariate modeling and hierarchical summary receiver operating characteristic (HSROC) curves (AUCs). The Z test was used to determine whether adding functional MRI to T2-weighted imaging (T2WI) results in significantly increased diagnostic sensitivity and specificity. Results: Meta-analysis of 13 studies involving 826 patients who underwent radical prostatectomy showed a pooled sensitivity and specificity of 91%, and the AUC was 0.96. Meta-analysis of 7 studies involving 329 patients who underwent radiotherapy showed a pooled sensitivity of 80% and specificity of 81%, and the AUC was 0.88. Meta-analysis of 11 studies reporting 1669 sextant biopsies from patients who underwent radiotherapy showed a pooled sensitivity of 54% and specificity of 91%, and the AUC was 0.85. Sensitivity after radiotherapy was significantly higher when diffusion-weighted MRI data were combined with T2WI than when only T2WI results were used. This was true when meta-analysis was performed on a per-patient basis (p = 0.027) or per sextant biopsy (p = 0.046). A similar result was found when $^1H$-magnetic resonance spectroscopy ($^1H$-MRS) data were combined with T2WI and sextant biopsy was the unit of analysis (p = 0.036). Conclusion: Functional MRI data may not strengthen the ability of T2WI to detect locally recurrent prostate cancer in patients who have undergone radical prostatectomy. By contrast, diffusion-weight MRI and $^1H$-MRS data may improve the sensitivity of T2WI for patients who have undergone radiotherapy.

The Role of Double Inversion Recovery Imaging in Acute Ischemic Stroke

  • Choi, Na Young;Park, Soonchan;Lee, Chung Min;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.210-219
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate if double inversion recovery (DIR) imaging can have a role in the evaluation of brain ischemia, compared with diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) imaging. Materials and Methods: Sixty-seven patients within 48 hours of onset, underwent MRI scans with FLAIR, DWI with b-value of 0 (B0) and $1000s/mm^2$, and DIR sequences. Patients were categorized into four groups: within three hours, three to six hours, six to 24 hours, and 24 to 48 hours after onset. Lesion-to-normal ratio (LNR) value was calculated and compared among all sequences within each group, by the Friedman test and conducted among all groups, for each sequence by the Kruskal-Wallis test. In qualitative assessment, signal intensity changes of DIR, B0, and FLAIR based on similarity with DWI and image quality of each sequence, were graded on a 3-point scale, respectively. Scores for detectability of lesions were compared by the McNemar's test. Results: LNR values from DWI were higher than DIR, but not statistically significant in all groups (P > 0.05). LNR values of DIR were significantly higher than FLAIR within 24 hours of onset (P < 0.05). LNR values were significantly different between, before, and after six hours onset time for DIR (P = 0.016), B0 (P = 0.008), and FLAIR (P = 0.018) but not for DWI (P = 0.051). Qualitative analysis demonstrated that detectability of DIR was higher, compared to that of FLAIR within 4.5 hours and six hours of onset (P < 0.05). Also, the DWI quality score was lower than that of DIR, particularly relative to infratentorial lesions. Conclusion: DIR provides higher detectability of hyperacute brain ischemia than B0 and FLAIR, and does not suffer from susceptibility artifact, unlike DWI. So, DIR can be used to replace evaluation of the FLAIR-DWI mismatch.

Transient Splenial Lesions in the Splenium of Corpus Callosum in Seven Patients: MR Findings and Clinical Correlations (뇌량 팽대의 일과성 병변: 7명의 환자에서의 자기공명 영상소견과 임상 양상의 연관성)

  • Park, Ju Young;Lee, In Ho;Song, Chang June;Hwang, Hee Youn
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Purpose : The purpose of this study is to correlate the imaging findings and the clinical findings in patients with transient splenial lesions (TSL). Materials and Methods: Total of 7 patients (M: F = 4: 3; age range 11 - 38 years, mean age 25.5 years) were studied between November 2006 and April 2011. The MRI findings and clinical findings in all patients were retrospectively reviewed. The location, MR signal intensity, restricted diffusion, enhancement pattern and reversibility from the follow up images were reviewed. Clinical features were reviewed with respect to the presented symptoms, signs, treatment and outcome. Results: The lesions were located in the splenium of corpus callosum in all patients. All lesions showed high signal intensity on diffusion weighted imaging (DWI), and six patients showed restricted diffusion on the apparent diffusion coefficient (ADC) map. ADC map was not available in one patient. All lesions (n = 7) showed high signal intensity on the T2 weighted image (T2WI). Five of the patients (71.4%) with follow up images (range 7 - 34 days) showed complete resolution of focal high signal intensity on DWI, with recovery of ADC values as well as T2WI. After contrast media administration, none of the lesions showed any enhancements. All lesions with various etiologies including TB medication were developed in younger age patients and showed reversibility after the acceptable period of minimum 7 days with conservative treatment. Conclusion: All TSL showed nonspecific imaging findings, including restricted diffusion on DWI and ADC map on the initial images. However, reversibility of the lesions and the young age preference can be a characteristic finding of TSL with acceptable period of minimum 7 days. In addition, to keep it in mind that various etiologies including TB medication may cause TSL, is important for radiologists as well as clinicians.

Pre-operative Evaluation of Consistency in Intra-axial Brain Tumor with Diffusion-weighted Images (DWI) and Conventional MR Images (확산강조영상과 고식적 자기공명영상을 이용한 수술 전 축내 뇌종양의 경도 평가)

  • Oh, Moon-Sik;Ahn, Kook-Jin;Choi, Hyun-Seok;Jung, So-Lyung;Lee, Yoon-Joo;Kim, Bum-Soo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • Purpose : To retrospectively evaluate the usefulness of diffusion-weighted images, ADC maps and conventional MR images for determination of brain tumor consistency. Materials and Methods : Twenty-three patients with brain tumor underwent MR examinations with T1, T2 and diffusion-weighted images. Regions of interest (ROIs) were drawn in the tumors, and the measured signal intensities (SI) were normalized with the contralateral side. We evaluated the correlation between SI ratios from various images and tumor consistency assessed at surgery. In three patients with both cystic and solid components, each component was evaluated independently. Qualitatively observed SIs were also correlated with tumor consistency. Results : Statistical analysis revealed significant correlation between tumor consistency and ADC ratio (r = -0.586, p = 0.002), SI ratios on T2-weighted images (r = -0.497, p = 0.010), and observed SIs on T2-weighted images (r = -0.461, p = 0.018). The relative ratio of ADC value correlated with tumor consistency most strongly. Conclusion : The measured ratio of ADC, SI ratio and observed SI grade on T2-weighted images can provide valuable information about the consistency of brain tumor.

A Study on the Dyadic Sorting method for the Regularization in DT-MRI (Dyadic Sorting 방법을 이용한 DT-MRI Regularization에 관한 연구)

  • Kim, Tae-Hwan;Woo, Jong-Hyung;Lee, Hoon;Kim, Dong-Youn
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.30-39
    • /
    • 2010
  • Since Diffusion tensor from Diffusion Tensor Magnetic Resonance Imaging(DT-MRI) is so sensitive to noise, the principle eigenvector(PEV) calculated from Diffusion tensor could be erroneous. Tractography obtained from PEV could be deviated from the real fiber tract. Therefore regularization process is needed to eliminate noise. In this paper, to reduce noise in DT-MRI measurements, the Dyadic Sorting(DS) method as regularization of the eigenvalue and the eigenvector is applied in the tractography. To resort the eigenvalues and the eignevectors, the DS method uses the intervoxel overlap function which can measure the overlap between eigenvalue-eigenvector pairs in the $3\times3$ pixel. In this paper, we applied the DS method to the three-dimensional volume. We discuss the error analysis and numerical study to the synthetic and the experimental data. As a result, we have shown that the DS method is more efficient than the median filtering methods as much as 79.97%~83.64%, 85.62%~87.76% in AAE, AFA respectively for the corticospinal tract of the experimental data.

Measurement of Apparent Diffusion Coefficient Values from Diffusion-Weighted MRI: A Comparison of Manual and Semiautomatic Segmentation Methods

  • Kim, Seong Ho;Choi, Seung Hong;Yoon, Tae Jin;Kim, Tae Min;Lee, Se-Hoon;Park, Chul-Kee;Kim, Ji-Hoon;Sohn, Chul-Ho;Park, Sung-Hye;Kim, Il Han
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.88-98
    • /
    • 2015
  • Purpose: To compare the interobserver and intraobserver reliability of mean apparent diffusion coefficient (ADC) values using contrast-enhanced (CE) T1 weighted image (WI) and T2WI as structural images between manual and semiautomatic segmentation methods. Materials and Methods: Between January 2011 and May 2013, 28 patients who underwent brain MR with diffusion weighted image (DWI) and were pathologically confirmed as having glioblastoma participated in our study. The ADC values were measured twice in manual and semiautomatic segmentation methods using CE-T1WI and T2WI as structural images to obtain interobserver and intraobserver reliability. Moreover, intraobserver reliabilities of the different segmentation methods were assessed after subgrouping of the patients based on the MR findings. Results: Interobserver and intraobserver reliabilities were high in both manual and semiautomatic segmentation methods on CE-T1WI-based evaluation, while interobserver reliability on T2WI-based evaluation was not high enough to be used in a clinical context. The intraobserver reliability was particularly lower with the T2WI-based semiautomatic segmentation method in the subgroups with involved $lobes{\leq}2$, with partially demarcated tumor borders, poorly demarcated inner margins of the necrotic portion, and with perilesional edema. Conclusion: Both the manual and semiautomatic segmentation methods on CE-T1WI-based evaluation were clinically acceptable in the measurement of mean ADC values with high interobserver and intraobserver reliabilities.

MRI Predictors of Malignant Transformation in Patients with Inverted Papilloma: A Decision Tree Analysis Using Conventional Imaging Features and Histogram Analysis of Apparent Diffusion Coefficients

  • Chong Hyun Suh;Jeong Hyun Lee;Mi Sun Chung;Xiao Quan Xu;Yu Sub Sung;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.751-758
    • /
    • 2021
  • Objective: Preoperative differentiation between inverted papilloma (IP) and its malignant transformation to squamous cell carcinoma (IP-SCC) is critical for patient management. We aimed to determine the diagnostic accuracy of conventional imaging features and histogram parameters obtained from whole tumor apparent diffusion coefficient (ADC) values to predict IP-SCC in patients with IP, using decision tree analysis. Materials and Methods: In this retrospective study, we analyzed data generated from the records of 180 consecutive patients with histopathologically diagnosed IP or IP-SCC who underwent head and neck magnetic resonance imaging, including diffusion-weighted imaging and 62 patients were included in the study. To obtain whole tumor ADC values, the region of interest was placed to cover the entire volume of the tumor. Classification and regression tree analyses were performed to determine the most significant predictors of IP-SCC among multiple covariates. The final tree was selected by cross-validation pruning based on minimal error. Results: Of 62 patients with IP, 21 (34%) had IP-SCC. The decision tree analysis revealed that the loss of convoluted cerebriform pattern and the 20th percentile cutoff of ADC were the most significant predictors of IP-SCC. With these decision trees, the sensitivity, specificity, accuracy, and C-statistics were 86% (18 out of 21; 95% confidence interval [CI], 65-95%), 100% (41 out of 41; 95% CI, 91-100%), 95% (59 out of 61; 95% CI, 87-98%), and 0.966 (95% CI, 0.912-1.000), respectively. Conclusion: Decision tree analysis using conventional imaging features and histogram analysis of whole volume ADC could predict IP-SCC in patients with IP with high diagnostic accuracy.

Electron Microburst Generation by Wave Particle Interaction

  • Lee, Jae-Jin;Hwang, Jung-A;Parks, George K.;Min, Kyoung-Wook;Lee, En-Sang
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.43.2-43.2
    • /
    • 2009
  • Electron microbursts are the intense electron precipitation which durations are less than one second. We measured the energy spectra of the microbursts from 170 keV to 340 keV with solid state detectors aboard the low-altitude (680km), polar-orbiting Korean STSAT-1 (Science and Technology SATellite). The data showed that the loss cone at these energies is empty except when microbursts abruptly appear and fill the loss cone in less than 50 msec. This fast loss cone filling requires pitch angle diffusion coefficients larger than ~ 10-2rad2/sec, while ~10-5 rad2/sec was proposed by a wave particle interaction theory. We recalculated the diffusion coefficient, and reviewed of electron microburst generation mechanism with test particle simulations. This simulation successfully explained how chorus waves make pitch angle diffusion within such short period. From considering the resonance condition between wave and electrons, we also showed ~ 100 keV electrons could be easily aligned to the magnetic field, while ~ 1MeV electrons filled loss cone partially. This consideration explained why precipitating microbursts have lower e-folding energy than that of quasi-trapped electrons, and supports the theory that relativistic electron microbursts that have been observed by satellite in-situ measurement have same origin with ~100 keV electron microbursts that have been usually observed by balloon experiments.

  • PDF

Visual recovery demonstrated by functional MRI and diffusion tensor tractography in bilateral occipital lobe infarction

  • Seo, Jeong Pyo;Jang, Sung Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.2
    • /
    • pp.152-156
    • /
    • 2014
  • We report on a patient who showed visual recovery following bilateral occipital lobe infarct, as evaluated by follow up functional magnetic resonance imaging (fMRI) and diffusion tensor tractography (DTT). A 56-year-old female patient exhibited severe visual impairment since onset of the cerebral infarct in the bilateral occipital lobes. The patient complained that she could not see anything, although the central part of the visual field remained dimly at 1 week after onset. However, her visual function has shown improvement with time. As a result, at 5 weeks after onset, she notified that her visual field and visual acuity had improved. fMRI and DTT were acquired at 1 week and 4 weeks after onset, using a 1.5-T Philips Gyroscan Intera. The fiber number of left optic radiation (OR) increased from 257 (1-week) to 353 (4-week), although the fiber numbers for right OR were similar. No activation in the occipital lobe was observed on 1-week fMRI. By contrast, activation of the visual cortex, including the bilateral primary visual cortex, was observed on 4-week fMRI. We demonstrated visual recovery in this patient in terms of the changes observed on DTT and fMRI. It appears that the recovery of the left OR was attributed more to resolution of local factors, such as peri-infarct edema, than brain plasticity.