• Title/Summary/Keyword: Diffusion limiting current density

Search Result 12, Processing Time 0.022 seconds

The Effect of Additives on the High Current Density Copper Electroplating (고전류밀도에서 첨가제에 따른 구리도급의 표면 특성 연구)

  • Shim, Jin-Yong;Moon, Yun-Sung;Hur, Ki-Su;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • The current density in copper electroplating is directly related with the productivity and then to increase the productivity, the increase in current density is required. To obtain the high mass flow rate, rotating disk electrode(RDE) was employed. High rotational speed in RDE can increase the mass flow rate and then high speed electroplating was possible using RDE to control mass flow. Two types of cathode were used. One is RDE and another is rotating cylindrical electrode(RCE). A constant-current, constant-voltage and linear sweep voltammetry were applied to investigate current and voltage relationship. The maximum current density without evolution of hydrogen gas was increased with rotational speed. Over 400 rpm, maximum current density was higher than 1000 A/$m^2$. The diffusion coefficients of copper calculated from the slope of the plots are $5.5{\times}10^6\;cm^2\;s^{-1}$ at $25^{\circ}C$ and $10.5{\times}10^6\;cm^2\;s^{-1}$ at $62^{\circ}C$. The stable voltage without evolution of hydrogen gas was -0.05 V(vs Ag/AgCl). Additives were added to prevent dendritic growth on cathode deposits. The surface roughness was analyzed with UV-Vis Spectrophotometer. The reflectance of the copper surface over 600 nm was measured and was related with the surface roughness. As the surface roughness improved, the reflectance was also increased.

Diffusion Coefficient of Ag(I) ion in the Concentrated Nitric Acid Solution (고농도 질산용액에서 Ag(I) 이온의 확산계수 측정)

  • Park Sang Yoon;Choi Wang Kyu;Lee Kune Woo;Moon Jei Kwon;Oh Won Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 1999
  • From the anodic peak currents of cyclic voltammograms for Ag(I)/Ag(II) couple obtained with the variation of nitric acid concentration, Ag(I) concentration and solution temperature at a Pt electrode in concentrated nitric acid solutions, the diffusion coefficients of Ag(I) ion were evaluated to estimate the limiting current density of Ag(II)-mediated electrochemical oxidation (MEO) process, which has been effectively used for the complete destruction of hazardous organic materials. The results showed that, due to the water decomposition reaction which occurred simultaneously with the Ag(I) ion oxidation, background subtractions for the cyclic voltammograms were required to estimate the correct peak currents. The empirical relationship for the diffusion coefficient of Ag(I) was suggested as a function of solution viscosity and temperature.