• Title/Summary/Keyword: Diffusion kurtosis imaging

Search Result 5, Processing Time 0.02 seconds

Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study

  • Huihui Wang;Hongwei Wen;Jing Li;Qian Chen;Shanshan Li;Yanling Wang;Zhenchang Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1142-1151
    • /
    • 2021
  • Objective: To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods: This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results: Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = -0.448 to -0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion: HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.

Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging

  • Lee, Youngjun;Jee, Won-Hee;Whang, Yoon Sub;Jung, Chan Kwon;Chung, Yang-Guk;Lee, So-Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.118-128
    • /
    • 2021
  • Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1- and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm2), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.

Comparison of Monoexponential, Biexponential, Stretched-Exponential, and Kurtosis Models of Diffusion-Weighted Imaging in Differentiation of Renal Solid Masses

  • Jianjian Zhang;Shiteng Suo;Guiqin Liu;Shan Zhang;Zizhou Zhao;Jianrong Xu;Guangyu Wu
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.791-800
    • /
    • 2019
  • Objective: To compare various models of diffusion-weighted imaging including monoexponential apparent diffusion coefficient (ADC), biexponential (fast diffusion coefficient [Df], slow diffusion coefficient [Ds], and fraction of fast diffusion), stretched-exponential (distributed diffusion coefficient and anomalous exponent term [α]), and kurtosis (mean diffusivity and mean kurtosis [MK]) models in the differentiation of renal solid masses. Materials and Methods: A total of 81 patients (56 men and 25 women; mean age, 57 years; age range, 30-69 years) with 18 benign and 63 malignant lesions were imaged using 3T diffusion-weighted MRI. Diffusion model selection was investigated in each lesion using the Akaike information criteria. Mann-Whitney U test and receiver operating characteristic (ROC) analysis were used for statistical evaluations. Results: Goodness-of-fit analysis showed that the stretched-exponential model had the highest voxel percentages in benign and malignant lesions (90.7% and 51.4%, respectively). ADC, Ds, and MK showed significant differences between benign and malignant lesions (p < 0.05) and between low- and high-grade clear cell renal cell carcinoma (ccRCC) (p < 0.05). α was significantly lower in the benign group than in the malignant group (p < 0.05). All diffusion measures showed significant differences between ccRCC and non-ccRCC (p < 0.05) except Df and α (p = 0.143 and 0.112, respectively). α showed the highest diagnostic accuracy in differentiating benign and malignant lesions with an area under the ROC curve of 0.923, but none of the parameters from these advanced models revealed significantly better performance over ADC in discriminating subtypes or grades of renal cell carcinoma (RCC) (p > 0.05). Conclusion: Compared with conventional diffusion parameters, α may provide additional information for differentiating benign and malignant renal masses, while ADC remains the most valuable parameter for differentiation of RCC subtypes and for ccRCC grading.

Monitoring Response to Neoadjuvant Chemotherapy of Primary Osteosarcoma Using Diffusion Kurtosis Magnetic Resonance Imaging: Initial Findings

  • Chenglei Liu;Yan Xi;Mei Li;Qiong Jiao;Huizhen Zhang;Qingcheng Yang;Weiwu Yao
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.801-811
    • /
    • 2019
  • Objective: To determine whether diffusion kurtosis imaging (DKI) is effective in monitoring tumor response to neoadjuvant chemotherapy in patients with osteosarcoma. Materials and Methods: Twenty-nine osteosarcoma patients (20 men and 9 women; mean age, 17.6 ± 7.8 years) who had undergone magnetic resonance imaging (MRI) and DKI before and after neoadjuvant chemotherapy were included. Tumor volume, apparent diffusion coefficient (ADC), mean diffusivity (MD), mean kurtosis (MK), and change ratio (ΔX) between pre-and post-treatment were calculated. Based on histologic response, the patients were divided into those with good response (≥ 90% necrosis, n = 12) and those with poor response (< 90% necrosis, n = 17). Several MRI parameters between the groups were compared using Student's t test. The correlation between image indexes and tumor necrosis was determined using Pearson's correlation, and diagnostic performance was compared using receiver operating characteristic curves. Results: In good responders, MDpost, ADCpost, and MKpost values were significantly higher than in poor responders (p < 0.001, p < 0.001, and p = 0.042, respectively). The ΔMD and ΔADC were also significantly higher in good responders than in poor responders (p < 0.001 and p = 0.01, respectively). However, no significant difference was observed in ΔMK (p = 0.092). MDpost and ΔMD showed high correlations with tumor necrosis rate (r = 0.669 and r = 0.622, respectively), and MDpost had higher diagnostic performance than ADCpost (p = 0.037) and MKpost (p = 0.011). Similarly, ΔMD also showed higher diagnostic performance than ΔADC (p = 0.033) and ΔMK (p = 0.037). Conclusion: MD is a promising biomarker for monitoring tumor response to preoperative chemotherapy in patients with osteosarcoma.

Tumor Margin Infiltration in Soft Tissue Sarcomas: Prediction Using 3T MRI Texture Analysis (연조직 육종의 종양 가장자리 침윤: 3T 자기공명영상 텍스처 분석을 통한 예측)

  • Minji Kim;Won-Hee Jee;Youngjun Lee;Ji Hyun Hong;Chan Kwon Jung;Yang-Guk Chung;So-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.112-126
    • /
    • 2022
  • Purpose To determine the value of 3 Tesla (T) MRI texture analysis for predicting tumor margin infiltration in soft tissue sarcomas. Materials and Methods Thirty-one patients who underwent 3T MRI and had a pathologically confirmed diagnosis of soft tissue sarcoma were included in this study. Margin infiltration on pathology was used as the gold standard. Texture analysis of soft tissue sarcomas was performed on axial T1-weighted images (WI) and T2WI, fat-suppressed contrast-enhanced (CE) T1WI, diffusion-weighted images (DWI) with b-value of 800 s/mm2, and apparent diffusion coefficient (ADC) was mapped. Quantitative parameters were compared between sarcomas with infiltrative margins and those with circumscribed margins. Results Among the 31 patients with soft tissue sarcomas, 23 showed tumor margin infiltration on pathology. There were significant differences in kurtosis with the spatial scaling factor (SSF) of 0 and 6 on T1WI, kurtosis (SSF, 0) on CE-T1WI, skewness (SSF, 0) on DWI, and skewness (SSF, 2, 4) on ADC between sarcomas with infiltrative margins and those with circumscribed margins (p ≤ 0.046). The area under the receiver operating characteristic curve based on MR texture features for identification of infiltrative tumor margins was 0.951 (p < 0.001). Conclusion MR texture analysis is reliable and accurate for the prediction of infiltrative margins of soft tissue sarcomas.