• Title/Summary/Keyword: Diffusion imaging

Search Result 441, Processing Time 0.04 seconds

Diffusion tensor imaging of the C1-C3 dorsal root ganglia and greater occipital nerve for cervicogenic headache

  • Wang, Lang;Shen, Jiang;Das, Sushant;Yang, Hanfeng
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Background: Previous studies showed neurography and tractography of the greater occipital nerve (GON). The purpose of this study was determining diffusion tensor imaging (DTI) parameters of bilateral GONs and dorsal root ganglia (DRG) in unilateral cervicogenic headache as well as the grading value of DTI for severe headache. The correlation between DTI parameters and clinical characteristics was evaluated. Methods: The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in bilateral GONs and cervical DRG (C2 and C3) were measured. Grading values for headache severity was calculated using a receiver operating characteristics curve. The correlation was analyzed with Pearson's coefficient. Results: The FA values of the symptomatic side of GON and cervical DRG (C2 and C3) were significantly lower than that of the asymptomatic side (all the P < 0.001), while the ADC values were significantly higher (P = 0.003, P < 0.001, and P = 0.003, respectively). The FA value of 0.205 in C2 DRG was considered the grading parameter for headache severity with sensitivity of 0.743 and specificity of 0.999 (P < 0.001). A negative correlation and a positive correlation between the FA and ADC value of the GON and headache index (HI; r = -0.420, P = 0.037 and r = 0.531, P = 0.006, respectively) was found. Conclusions: DTI parameters in the symptomatic side of the C2 and C3 DRG and GON were significantly changed. The FA value of the C2 DRG can grade headache severity. DTI parameters of the GON significantly correlated with HI.

Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging

  • Lee, Youngjun;Jee, Won-Hee;Whang, Yoon Sub;Jung, Chan Kwon;Chung, Yang-Guk;Lee, So-Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.118-128
    • /
    • 2021
  • Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1- and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm2), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.

Performance Evaluation of a Rapid Three Dimensional Diffusion MRI

  • Numano, Tomokazu;Homma, Kazuhiro;Nishimura, Katsuyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.356-358
    • /
    • 2002
  • MRI, particularly diffusion weighted imaging (DWI), plays vital roles in detection of the acute brain infarction$\^$1-4/ and others metabolic changes of biological tissues. In general, every molecule in biological tissues may diffuse and move randomly in three-dimensional space. However, in clinical diagnosis, only 2D-DWI is used. The authors have developed a new method for rapid three-dimensional DWI (3D-DWI). In this method, by refocusing of the magnetized spin with the applied gradient field, direction of which is opposite to phase encoding field. Magnetized spin of $^1$H is kept under the SSFP (steady state free precession)$\^$5-6/. Under SSFP, in addition of FID, spin echo and stimulated echo are also generated, so the acquired signal is increased. The signal intensity is increased depending on flip angle (FA) of magnetized spin. This phenomenon is confirmed by human brain and phantom studies. The performance of this method is quantitatively analyzed by using both of conventional spin echo DWI and 3D-DWI. From experimental results, three dimensional diffusion weighted images are obtained correctly for liquid phantoms (water, acetone and oil), diffusion coefficient is enhanced in each image. Therefore, this method will provide useful information for clinical diagnosis.

  • PDF

Detection of Hepatic Lesion: Comparison of Free-Breathing and Respiratory-Triggered Diffusion-Weighted MR imaging on 1.5-T MR system (국소 간 병변의 발견: 1.5-T 자기공명영상에서의 자유호흡과 호흡유발 확산강조 영상의 비교)

  • Park, Hye-Young;Cho, Hyeon-Je;Kim, Eun-Mi;Hur, Gham;Kim, Yong-Hoon;Lee, Byung-Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.22-31
    • /
    • 2011
  • Purpose : To compare free-breathing and respiratory-triggered diffusion-weighted imaging on 1.5-T MR system in the detection of hepatic lesions. Materials and Methods: This single-institution study was approved by our institutional review board. Forty-seven patients (mean 57.9 year; M:F = 25:22) underwent hepatic MR imaging on 1.5-T MR system using both free-breathing and respiratory-triggered diffusion-weighted imaging (DWI) at a single examination. Two radiologists retrospectively reviewed respiratory-triggered and free-breathing sets (B50, B400, B800 diffusion weighted images and ADC map) in random order with a time interval of 2 weeks. Liver SNR and lesion-to-liver CNR of DWI were calculated measuring ROI. Results : Total of 62 lesions (53 benign, 9 malignant) that included 32 cysts, 13 hemangiomas, 7 hepatocellular carcinomas (HCCs), 5 eosinophilic infiltration, 2 metastases, 1 eosinophilic abscess, focal nodular hyperplasia, and pseudolipoma of Glisson's capsule were reviewed by two reviewers. Though not reaching statistical significance, the overall lesion sensitivities were increased in respiratory-triggered DWI [reviewer1: reviewer2, 47/62(75.81%):45/62(72.58%)] than free-breathing DWI [44/62(70.97%):41/62(66.13%)]. Especially for smaller than 1 cm hepatic lesions, sensitivity of respiratory-triggered DWI [24/30(80%):21/30(70%)] was superior to free-breathing DWI [17/30(56.7%):15/30(50%)]. The diagnostic accuracy measuring the area under the ROC curve (Az value) of free-breathing and respiratory-triggered DWI was not statistically different. Liver SNR and lesion-to-liver CNR of respiratory-triggered DWI ($87.6{\pm}41.4$, $41.2{\pm}62.5$) were higher than free-breathing DWI ($38.8:{\pm}13.6$, $24.8{\pm}36.8$) (p value < 0.001, respectively). Conclusion: Respiratory-triggered diffusion-weighted MR imaging seemed to be better than free-breathing diffusion-weighted MR imaging on 1.5-T MR system for the detection of smaller than 1 cm lesions by providing high SNR and CNR.

A Study on the Characteristics of Plant Fiber Materials for Diffusion Tensor Imaging Phantom (확산텐서영상 팬텀 제작을 위한 식물섬유 재료의 특성에 관한 연구)

  • Lee, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • The purpose of this study was to reconstruct diffusion tensor tractography (DTT) using stem of garlic and asparagus for in vitro phantom of diffusion tensor imaging (DTI), and to compare and evaluate the fractional anisotropy (FA) value and the apparent diffusion coefficient (ADC) value to determine whether it can be used as materials for in vitro phantoms. Among various plant fibers such as stem of garlic, palmae, cotton, asparagus, etc., stem of garlic and asparagus, which are considered to be the most suitable for making phantoms, and whose shape is considered to be the most suitable for making phantoms, were selected and tests were conducted. Holes were made in a plastic bucket at an angle of 0°, 30°, 60°, 90°, and 120°, then tubes were inserted. In the tube, asparagus and stem of garlic were inserted as far in as possible, and the inserted tube was inserted into the center of the heat bathed gelatin to harden. We were able to reproduce DTT images in asparagus and stem of garlic. Fiber tissues of asparagus and stem of garlic did not show complete connectivity, but the reconstructed images of DTT showed good connectivity. The FA values of asparagus in the tubes were 0.198 at 0° (straight), 0.207 at 30°, 0.187 at 60°, 0.231 at 90°, and 0.204 at 120°. In addition, the FA values of stem of garlic in the tubes were 0.235 at 0°, 0.236 at 30°, 0.216 at 60°, 0.218 at 90°, and 0.257 at 120°. The ADC values of asparagus in the tubes were 1.545 at 0°, 1.677 at 30°, 1.629 at 60°, 1.535 at 90°, and 1.725 at 120°. In addition, the ADC values of stem of garlic in the tubes were 1.252 at 0°, 1.396 at 30°, 1.698 at 60°, 1.756 at 90°, and 1.466 at 120°. For the best expressed DTT reconstruction image, it showed the longest connectivity in the straight line as we hypothesized. In addition, when comparing the FA values and ADC values of fiber tissues of stem of garlic and asparagus, FA value was generally higher in stem of garlic and ADC value was slightly higher in asparagus.

Diffusion Weighted Imaging in Musculoskeletal MRI: Analysis on Optimal Number of Excitations Providing better Differentiation of Maglignant Tumor (악성종양의 감별진단을 위한 근골격의 확산강조영상 검사 시 최적의 여기횟수)

  • Choi, Kwan-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.338-344
    • /
    • 2018
  • The purpose of this study was to determine the optimal number of excitations(NEX) of diffusion weighted imaging(DWI) which is clinically useful in patients with musculoskeletal diseases while the scan time is relatively long. In this study, 30 patients underwent knee MRI using diffusion weighted image sequence using b values targeted on the bone and muscle. The NEX were varied from 1 to 5 and the ADC values were measured and analyzed. As a result of the study, 4 NEX and 2 NEX showed an statistically identical effect with the existing NEX on the bone and muscle diffusion weighted images, respectively. Also, it proved that the scan time could be significantly reduced by 21.2 % and 59.6 % compared to the established NEX which meant the optimal NEX could replace the existing NEX. In conclusion, applying the optimal NEX on the musculoskeletal bone and soft tissue DWI could improve the problems caused by the long scan time.

Pseudoglandular Formation in Hepatocellular Carcinoma Determines Apparent Diffusion Coefficient in Diffusion-Weighted MRI

  • Park, In Kyung;Yu, Jeong-Sik;Cho, Eun-Suk;Kim, Joo Hee;Chung, Jae-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • Purpose: To determine the impact of pseudoglandular formation on apparent diffusion coefficient (ADC) values of hepatocellular carcinoma (HCC) in diffusion-weighted imaging (DWI), and to validate the results using histopathological grades. Materials and Methods: We assessed 182 HCCs surgically resected from 169 consecutive patients. Each type of tumor pseudoglandular formation was categorized into "non-," "mixed-," or "pure-," based on official histopathology reports. The ADC for each tumor was independently measured, using the largest region of interest on the ADC map. Data were assessed using the analysis of variance test, with Bonferroni correction for post hoc analysis to stratify the relationship of ADCs with pseudoglandular formation, followed by subgroup analysis according to the histopathological tumor grades. Results: The mean ADC was significantly higher in pure pseudoglandular lesions (n = 5, $1.29{\pm}0.08{\times}10^{-3}mm^2/s$) than in non-pseudoglandular lesions (n = 132, $1.08{\pm}0.17{\times}10^{-3}mm^2/s$; P = 0.003) or mixed-pseudoglandular lesions (n = 45, $1.16{\pm}0.24{\times}10^{-3}mm^2/s$; P = 0.034). The ADC values and pseudoglandular formation were significantly correlated in moderately differentiated HCCs (n = 103; r = 0.307, P = 0.007), while well- (n = 19) and poorly-differentiated HCCs (n = 60) did not show significant correlation (r = 0.105 and 0.068, respectively; P = 0.600 and 0.685, respectively). Conclusion: The degree of pseudoglandular formation could be one of the determinants of ADC in DWI of HCCs-especially moderately differentiated HCCs-while its influence does not appear to be significant in well- or poorly differentiated HCCs.

Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review

  • Sae Rom Chung;Young Jun Choi;Chong Hyun Suh;Jeong Hyun Lee;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.649-661
    • /
    • 2019
  • Objective: To systematically review the evaluation of the diagnostic accuracy of pre-treatment apparent diffusion coefficient (ADC) and change in ADC during the intra- or post-treatment period, for the prediction of locoregional failure in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Ovid-MEDLINE and Embase databases were searched up to September 8, 2018, for studies on the use of diffusion-weighted magnetic resonance imaging for the prediction of locoregional treatment response in patients with HNSCC treated with chemoradiation or radiation therapy. Risk of bias was assessed by using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Results: Twelve studies were included in the systematic review, and diagnostic accuracy assessment was performed using seven studies. High pre-treatment ADC showed inconsistent results with the tendency for locoregional failure, whereas all studies evaluating changes in ADC showed consistent results of a lower rise in ADC in patients with locoregional failure compared to those with locoregional control. The sensitivities and specificities of pre-treatment ADC and change in ADC for predicting locoregional failure were relatively high (range: 50-100% and 79-96%, 75-100% and 69-95%, respectively). Meta-analytic pooling was not performed due to the apparent heterogeneity in these values. Conclusion: High pre-treatment ADC and low rise in early intra-treatment or post-treatment ADC with chemoradiation, could be indicators of locoregional failure in patients with HNSCC. However, as the studies are few, heterogeneous, and at high risk for bias, the sensitivity and specificity of these parameters for predicting the treatment response are yet to be determined.

Prostate Imaging Reporting and Data System (PI-RADS) v 2.1: Overview and Critical Points (전립선영상 판독과 자료체계 2.1 버전: 개요와 비판적인 의견)

  • Chan Kyo Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.75-91
    • /
    • 2023
  • The technical parameters and imaging interpretation criteria of the Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) using multiparametric MRI (mpMRI) are updated in PI-RADS v2.1. These changes have been an expected improvement for prostate cancer evaluation, although some issues remain unsolved, and new issues have been raised. In this review, a brief overview of PI-RADS v2.1 is and several critical points are discussed as follows: the need for more detailed protocols of mpMRI, lack of validation of the revised transition zone interpretation criteria, the need for clarification for the revised diffusion-weighted imaging and dynamic contrast-enhanced imaging criteria, anterior fibromuscular stroma and central zone assessment, assessment of background signal and tumor aggressiveness, changes in the structured report, the need for the parameters for imaging quality and performance control, and indications for expansion of the system to include other indications.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.