• Title/Summary/Keyword: Diffusion Flames

Search Result 309, Processing Time 0.022 seconds

A Numerical Study on Nonlinear Dynamic Behavior of Diffusive-Thermal Instability in Diluted CH4/O2 Conterflow Diffusion Flames (희석된 메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 비선형 동적 거동에 관한 수치해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2004
  • Nonlinear dynamic behavior of diffusive-thermal instability in diluted CH$_4$/O$_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution, which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is net observed in this study, which is attributed to both convective flow and preferential diffusion effects.

Numerical Study on Dynamic Behavior of Diffusive-Thermal Instability in $CH_4/O_2$ Conterflow Diffusion Flames (메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 거동에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.95-101
    • /
    • 2004
  • Dynamic behavior of diffusive-thermal instability in diluted $CH_4/O_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate. transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed Oil the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution. which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is not observed in this study, which is attributed to both convective flow and preferential diffusion effects.

  • PDF

The Effect of Turbulence Intensity on the NOx Formation of Hydrogen Coaxial Jet Turbulent Diffusion Flames (난류강도가 수소 동축분류 난류 확산화염의 NOx 생성에 미치는 영향)

  • Han, Ji-Ung;Jeong, Yeong-Sik;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • Experimental investigations were conducted for two hydrogen-nitrogen coaxial jet diffusion flames. A flame was a conventional coaxial jet diffusion flame and the other was a coaxial jet diffusion flame of which ambient air-jet turbulence was intensified. In this study, firstly two kinds of NOx measuring system were campared by using different convertors, secondly the NOx formation characteristics were investigated in order to examine the effect of turbulence intensity. In this study it is known that stainless convertor has some problem in the converting process from NO$_2$to NO in fuel rich region but molybdenum convertor can detect the amount of NOx correctly. The increase of turbulence intensity reduces the thermal NOx less than a half in our experiment and this effect is conspicuous near the nozzle. The conversion rate from NO to NO$_2$and the portion of NO$_2$among NOx are increased with turbulence intensity. These NOx measurements will help to understand the influences of turbulence intensity on NOx formation.

THE MORPHOLOGY OF CHROMIUM AND LIF MEASUREMENT OF ATOMIC ARSENIC IN LAMINAR DIFFUSION FLAMES

  • Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.61-68
    • /
    • 1997
  • The morphology and size distribution of chromium oxides and the concentration measurement of atomic arsenic have been studied in laminar diffusion flames. Nitrogen was added to vary flame temperatures in hydrogen flames. Ethene flames were used in order to investigate the potential for interaction between the soot aerosol that is formed in these flames and the chromium aerosol. Two sources of chromium compounds were introduced: chromium nitrate and chromium hexacarbonyl. A detailed investigation of the morphology was carried out by scanning electron microscopy (SEM). The amounts of Cr(VI) and total Cr were determined by a spectrophotometric method and by X-ray fluorescence spectrometry, respectively. Also, LIF was used for the measurement of atomic arsenic, which was excited at 197.2 nm and was detected at 249.6 nm. Results showed that the morphology of the particles varied with the flame temperature and with the chromium source. The particles were characterized by porous structures, cenospheres and agglomerated dense particles when chromium nitrate solution was added to the flames. At low to moderate temperatures, porous sintered cenospheric structures were formed, in some cases with a blow hole. At higher temperatures, an agglomerated cluster which was composed of loosely sintered submicron particles was observed. It was also found that the emission of Cr(VI) from the undiluted $H_2$ flame was more than 10 times larger than in the 50% $H_2$ / 50% $N_2$ flame on a mass basis. Single point LIF measurement of atomic arsenic indicated that arsenic exist only in the low temperature, fuel rich region.

  • PDF

Experimental Study on the Edge Flame Stabilization and its Structure Nearby Quenching Limits in a High Temperature Channel (고온 채널 내부 에지화염의 소염 한계 영역에서의 화염 안정화 및 구조에 관한 실험적 연구)

  • Lee, Min-Jung;Kim, Nam-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Edge flames have been interested as a basic structure that is concerned to flame stabilization and re-ignition of non-premixed flames. The edge flame consists of a lean premixed flame, a rich premixed flame, and a diffusion flame. In order to investigate fundamental structures of the edge flames at the conditions near the flammability limits, edge flames were stabilized within a heated narrow channel. Highly diluted partially premixed methane was used, and the flow rates of air and the partially premixed mixture were controlled. Various flame behaviors, including a transition between ordinary edge flames and premixed flames, were observed. Flame stabilization characteristics were examined as well. All flame stabilization conditions in this study showed a similar trend: characteristic time scales were inversely proportional to the equivalence ratio defined at the burner inlet. Finally, an interesting flame structure having a weak diffusion branch enveloped by a closed premixed branch was found near the flammability limits even in a fuel-air mixing layer. This structure was named as a "flame-drop" and the importance of this structure was first suggested.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 1. Concentration of Fuel

  • Park, Woe-Chul
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Structure of the counterflow nonpremixed flames were investigated by using Fire Dynamics Simulator(FDS) and OPPDIF to evaluate FDS for simulations of the diffusion flame. FDS, employed a mixture fraction formulation, were applied to the diluted axisymmetric methane-air nonpremixed counterflow flames. Fuel concentration in the mixture of methane and nitrogen was considered as a numerical parameter in the range from 20% to 100% increasing by 10% by volume at the global strain rates of $a_g = 20S^{-l} and 80S^{-1}$ respectively. In all the computations, the gravity was set to zero since OPPDIF is not able to compute the buoyancy effects. It was shown by the axisymmetric simulation of the flames with FDS that increasing fuel concentration increases the flame thickness and decreases the flame radius. The centerline temperature and axial velocity, and the peek flame temperature showed good agreement between the both methods.

The Role of Large Scale Mixing and Radiation in the Scaling of NOx Emissions From Unconfined Flames

  • Newbold, Greg J.R.;Nathan, Graham J.;Nobes, David S.;Turns, Stephen R.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Measurements of global emissions, flame radiation and flame dimensions are presented for unconfined turbulent-jet and precessing-jet diffusion flames. Precessing jet flames are characterised by increases in global flame radiation and global flame residence time for methane and propane fuels, however a strong dependency of the NOx emission indices on the fuel type exists. The fuel type dependence is considered to be because soot radiation is more effective than gas-radiation at reducing global flame temperatures relative to adiabatic flame temperatures and reducing the NO production rate.

  • PDF

On the Extinction Characteristics of the Interacting Lean-Lean Premixed Flames (상호작용을 하는 희박-희박 예혼합화염의 소화특성에 관한 연구)

  • 정석호;김종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.232-240
    • /
    • 1986
  • Extinction characteristics of the two interacting premixed flames are analyzed for the effects of flame stretch and preferential diffusion using large activation energy asymptotic analysis by adopting counterflow system as a model problem. Results show that the flammable limit of the thermally interacting premixed flames is extended compared to the single flame, and the extinction mechanism is classified into weak and strong interactions. As the lewis number of the deficient species increases, the region of strong interaction diminishes which can explain the different characteristics of the extinction boundaries of the lean (rich) methane/air and butane/air flames. The influence of the flame stretch to the interaction boundaries is also studied.

Effect of Chemical Interaction on Flame Extinction in Interacting H2-air and CO-air Premixed Flames (H2-공기와 CO-공기의 예혼합화염의 화염소화에 있어서 화학적 상호작용의 효과)

  • Jung, Seongwook;Park, Jeong;Kwon, Ohboong;Keel, Sangin;Yun, Jinhan
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.44-52
    • /
    • 2013
  • Important role of chemical interaction in flame extinction was numerically investigated in downstream interaction among lean(rich) and lean(rich) premixed as well as partially premixed $H_2$-air and CO-air flames. The strain rate varied from 30 to $5917s^{-1}$ until interacting flame could not be sustained anymore. Flame stability diagrams mapping lower and upper limit fuel concentrations for flame extinction as a function of strain rate are presented. Highly stretched interacting flames were survived only within two islands in the flame stability map where partially premixed mixture consisted of rich $H_2$-air flame, extremely lean CO-air flame, and a diffusion flame. Further increase in strain rate finally converges to two points. Appreciable amount of hydrogen in the side of lean $H_2$-air flame also oxidized the CO penetrated from CO-air flame, and this reduced flame speed of the $H_2$-air flame, leading to flame extinction. At extremely high strain rates, interacting flames were survived only by a partially premixed flame such that it consisted of a very rich $H_2$-air flame, an extremely lean CO-air flame, and a diffusion flame. In such a situation, both the weaker $H_2$-air and CO-air flames were parasite on the stronger diffusion flame such that it could lead to flame extinction in the situation of weakening the stronger diffusion flame. Particular concerns are focused on important role of chemical interaction in flame extinction was also discussed in detail.