• Title/Summary/Keyword: Diffusion Combustion

Search Result 442, Processing Time 0.019 seconds

The Effect of DBD Plasma on Fuel Reforming and on the Characteristics of Laminar Flames (DBD 플라즈마에 의한 연료개질 및 층류 화염 특성 변화)

  • Kim, Eungang;Park, Sunho;Song, Young-Hoon;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.195-198
    • /
    • 2014
  • $Fuel/N_2$ and fuel/air mixtures were treated with non-thermal DBD plasma and the changes in characteristics of laminar diffusion flame have been observed. Flame of $Fuel/N_2$ mixture generated more soot under plasma condition while less amount of soot was formed from fuel/air mixture flame. Luminescence spectrum and gas chromatography results confirmed that plasma energy converts a fraction of fuel molecules into radicals, which then form $C_2$, $C_3$, $C_4$ and higher hydrocarbon under no oxygen condition or turn into CO, $CO_2$ and $H_2O$ when oxygen is present.

  • PDF

Low Strain Rate Flame Extinction Characteristic of Oxygen Enhanced Opposed Flow Partially Premixed Flame in a Mesoscale Channel (채널 내부 대항류 산소부화 부분예혼합 화염의 저신장율 소화특성)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.243-244
    • /
    • 2014
  • The opposed flow flame in a mesoscale channel was constructed to observe the flame stabilization behaviors at low strain rate conditions (<$10s^{-1}$). The purpose of this study is to get the overall flame behaviors of partially premixed flames with oxygen enhanced conditions at low strain rates. The oxygen ratio in oxidizer was changed from 18 to 30 %. Conclusively, the flame extinction limit approached to about $1s^{-1}$, and divided into three representative regimes corresponding to self propagating flame, transitional flame, quenching flame regimes.

  • PDF

A Numerical Study of the Flame Cell Dynamics in Opposed Nonpremixed Tubular Configuration (비예혼합 튜브형상내 화염셀의 거동에 대한 수치 해석적 연구)

  • Park, Hyunsu;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.175-178
    • /
    • 2014
  • The flame cell dynamics in 2-D opposed nonpremixed tubular configuration was investigated using high-fidelity numerical simulations. The diffusive-thermal instability occurs as the $Damk{\ddot{o}}hler$ number, Da, approaches the 1-D extinction limit of the tubular flames and several flame cells are generated depending on Da, and flame radius. In general, the number of flame cells are found close to the largest wave number from the linear stability analysis. It was also found from the displacement speed analysis that during the local flame extinction and cell formation, negative edge flame speed is observed due to small gain from reaction compared to large loss from diffusion.

  • PDF

Modeling of Absorption/Desorption of Fuel in Oil film on the Cylinder Liner in SI Engines (오일유막의 연료 흡수 및 방출에 관한 연구)

  • 유상석;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.165-171
    • /
    • 1999
  • An oil layer fuel absorption /desorption modeling was developed. Multi-component fuel model has showed more reasonable condition than single component model. Henry's constant which is related to solubility is the most important variable in the oil layer absorption/desorption mechanism. The oil segments close to the top of the cylinder liner have more significant contribution to the fuel absorption and desorption process than other oil segments. At the warmed-up condition, the effect of the engine speed on the precent fuel absorbed/desorbed is minimal. But at low il film temperature, percent of fuel abosrbed/desorbed is decreased with increasing the engine speed because of low value of molecular diffusion coefficient of fuel. The amount of fuel trapped in the piston crevice is from 2 to 2.3 times larger than that of fuel in the oil fim. However, fuel form oil film slowly desorbs into the combustion chamber compared with fuel from the piston crevices when the engines is cold.

  • PDF

A Study on the Combustion Characteristics of Diffusion Flame by Analysis of Ion Currents Characteristics (이온전류의 특성을 이용한 확산화염의 연소특성고찰)

  • 안진근
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.146-155
    • /
    • 2000
  • 연료분출을 수반하는 원통형 보염기 후류에 형성되는 확산화염에 대한 이온전류의 특성과 화염의 안정범위를 측정, 분석함으로써 연소특성을 고찰하였다. 난류강도가 큰 경우의 화염일수록 화염의 안정성은 악화되며, 화염내 중앙의 평균 이온전류값이 가장 높은 값을 갖는 영역은 블로오프 직전상태에 비해서 안정시의 경우 더욱 하류측에 존재한다. 난류의 정도가 강한 화염의 경우 국소적으로 반응이 활발한 화염 덩어리가 빠른 속도로 이동하며, 난류의 정도가 강한 화염의 경우에는 반응이 완만한 화염 덩어리가 저속으로 이동한다. 재순환영역에서 주류유동측으로 이동함에 따라 자기상관계수의 저하가 빨라지고 난류 시간스케일이 작아지며, 부염기 직후에서 하류로 이동함에 따라 자기상관계수의 저하가 늦어지고 난류시간스케일이 커진다. 주류공기에 강한 난류를 가하지 않은 경우에는 큰 난류시간스케일에 대응되는 저주파수 특성이외에도 작은 난류 시간스케일에 대응되는 고주파수 특성이 나타나며 , 주류공기에 강한 난류를 가한 경우에는 큰 난류 시간스케일에 대응되는 저주파수 특성이 나타난다.

  • PDF

Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames (석탄가스 난류비예혼합 화염장의 해석)

  • Lee, Jeong-Won;Kim, Chang-Hwan;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF

The Effect of Flame Radiation on NOx Emission Characteristic in Hydrogen Turbulent Diffusion Flames (수소 난류확산화염에서 NOx 생성특성에 대한 복사분율의 영향)

  • Kim, Seung-Han;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.47-58
    • /
    • 2000
  • The relationship among the flame radiation, NOx emissions, residence time, and global strain rate are examined for turbulent non-premixed jet flames with wide variations in coaxial air conditions. Measurements of NOx emission, flame geometry and flame radiation were made to explain the NOx emission scaling based on global parameters such as flame residence time, global strain rate, and radiant fraction. The overall 1/2-power scaling is observed in coaxial air flames, irrespective of coaxial air conditions, but the degree of deviation from the l/2-slope curve in each case differs from one another. From the comparison between the results of pure hydrogen flames and those of helium diluted hydrogen flames, it is observed that flame radiation plays a significant role in pure hydrogen flames with coaxial air and the deviation from 1/2-power scaling may be explained in two reasons: the difference in the flame radiation and the difference in jet similarity in coaxial air flames. From the radiation measurements, more detailed explanations on these deviations were suggested.

  • PDF

An Experimental Study on Liftoff and Reattachment Characteristics in Concentric Burner (프로판 동축류 확산 화염에서 화염 부상과 재부착에 관한 실험적 연구)

  • Park, S.H.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.119-124
    • /
    • 2001
  • Propane coflow diffusion flames have been experimentally studied to investigate the liftoff and reattachment characteristics. Flame properties such as velocity and density distribution were measured by LDV and shadowgraphy, respectively. It is shown that as the velocity of coflowing air increases, liftoff velocity decreases nonlinearly in turbulent jets and linearly in laminar jets, while reattachment velocity decreases nonlinearly. Meanwhile, as inner nozzle tip thickness increases, liftoff velocity increases with the reattachment velocity nearly unchanged. Liftoff phenomena in these flames can be categorized into three classes as a function of coflow velocity, such as laminar liftoff, turbulent liftoff, and transient liftoff.

  • PDF

Theoretical Study on the Behavior of Momentum-controlled Buoyant Jet and Flame of Hydrogen (운동량에 의해 제어되는 수소 부양 제트 및 화염의 거동에 관한 이론적 해석)

  • Yang, Won;Kim, Jong-Soo;Won, Sang-Hee;Kim, Min-Kook;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.207-214
    • /
    • 2005
  • Hydrogen safety is one of the key technical issue with growing attention on utilization of hydrogen energy. This study is aimed to predict behavior of momentum-controlling buoyant jet and flame caused by hydrogen leakage from a high pressured tank. Approximate solutions were derived for the case of turbulent buoyant jet and diffusion flame in still air. In case of hydrogen jet with low Froude number (100-4000), computed jet trajectories were compared with experimental data and showed good agreement with them. Jet and flame trajectories and flame length of hydrogen are predicted and compared with the buoyant flame of propane. The results well show that buoyancy is dominant in the range of low Froude number, while initial momentum is dominant in the range of high Froude number. That effect is more distinct for hydrogen flame than the case of propane.

  • PDF

An Experimental Study on the Lift-off Characteristics of the Triple Flame with Concentration Gradient (농도구배가 삼지화염의 부상특성에 미치는 영향에 관한 실험적 연구)

  • Seo, Jeong-Il;Kim, Nam-Il;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.7-14
    • /
    • 2004
  • The lift-off characteristics of the triple flame have been studied experimentally with various mean velocities and concentration gradients using a multi-slot burner, which can control the concentration gradient and the mean velocity independently, Lift-off height, axial maximum velocity, flame temperature, and some other characteristics were examined for methane and propane flame, It was found that minimum values of the lift-off heights exist at a certain concentration gradient for constant mean velocity, and this result implies that the propagation velocity has a maximum value at this condition, OH radical distribution was measured with LIF method and velocity variation along streamline was measured with PlV system. In addition maximum temperature along streamline was measured with CARS system. The intensity of the diffusion flame affects on the propagation velocity of triple flame in the region of very weak concentration gradient.

  • PDF