• Title/Summary/Keyword: Diffusion Combustion

Search Result 442, Processing Time 0.022 seconds

A study on the spray combustion characteristics in a cylinder of a D.I.diesel engine with the electronically controlled injector (전자제어식 직접분사 디젤 엔진 연소실내의 분무연소 특성에 관한 연구)

  • 정재우;김성중;이기형;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • It is well known that the combustion phenomenon of diesel engine is an unsteady turbulent diffusion combustion. Therefore, the combustion performance of diesel engine is related to a complex phenomenon which involves the various factors of combustion, such as a injection pressure, injection timing, injection rate, and operation conditions of engine. In this study, the spray and the flame development processes in a single cylinder D.I. diesel visualization engine which uses the electronically controlled injection system were visualized to interpret the complicated combustion phenomenon by using high speed CCD camera. In addition, the cylinder pressure and heat release rate were also obtained in order to analyze the diesel combustion characteristics under several engine conditions.

  • PDF

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability (저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.

A Study on Combustion Characteristics of Turbulent Methane/Oxygen Diffusion Flames (메탄/산소 난류 확산화염의 연소 특성에 관한 연구)

  • Lee, Sang-Min;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.118-123
    • /
    • 2004
  • The combustion characteristics of 0.03MW turbulent methane/oxygen diffusion flames have been investigated to give basic informations for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since 3-5% nitrogen is intrinsically included from the current oxygen producing processes. Flame lengths and NOx concentrations were measured by varying flow velocities with and without installing quarls. Flame stabilities are significantly enhanced by oxyfuel combustion in contrast to air-fuel combustion. Flame length decreases with increasing fuel or oxygen velocity because of the enhancement of turbulent mixing. NOx concentration was reduced with increasing flo velocities. This can be attributed to the entrainment of inert product gases into flame decreasing flame temperature. The installation of quarl on the burners rather increased NOx concentration since the quarl blocked the entrainment above the nozzles.

  • PDF

Numerical Investigation on the Thermal and Flow Characteristics of Combustion Heater for Commercial Vehicle (차량용 연소식 난방기의 열 및 유동특성에 대한 수치연구)

  • Hwang, Chang-Hwan;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • The diesel pre-heater has being used in cabin heating and coolant heating of engine to reduce the engine warm up time for commercial vehicle. The pre-heaters are classified as diesel spray combustor and it forms diffusion flame. By using swirler, a recirculation flow of hot product gases is established near the fuel nozzle and it helps the maintaining of diffusion flame. The design difference of swirler can affect on reaction characteristics and temperature distribution inside pre-heater. The purpose of this study is the investigation of the effect of swirler configuration on combustion characteristics. To solve spray combustion problem, the Euler-Lagrange approach discrete model is used to track droplet trajectory and evaporation history. The PDF equilibrium model is used for chemical reaction model. These models are implemented into the FLUENT code.

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

Burke-Schumann analysis of silica formation by hydrolysis in an external chemical vapor deposition process (외부 화학증착 공정에서의 가수분해반응으로 인한 실리카 생성에 대한 버크-슈만 해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1671-1678
    • /
    • 1996
  • In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

A study on the spray combustion characteristics of D.I. diesel engine using visualization engine system (가시화 엔진을 이용한 직분식 디젤 엔진의 분무 연소 특성에 관한 연구)

  • Chung, J.W.;Lee, K.H.;Choi, S.W.;Kim, B.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 1999
  • Recently, many researchers have been studied a D.I. diesel engine because of the exhaust gas restriction and fuel consumption performance. It is well known that the fuel injection characteristics are the key factors on the diesel combustion and exhaust emission. In this study, the fuel injection characteristics of 5-hole injector and the combustion characteristics are investigated with the amount of fuel by means of the visualization method and visualization D.I. diesel engine system. As the results of the experiments, the spray pattern of the fuel injection and the diffusion flame of a D.I. diesel engine are clarified. In addition, combustion phenomena with operation conditions such as engine speed and engine load are made clear.

  • PDF