• Title/Summary/Keyword: Diffusion Combustion

Search Result 442, Processing Time 0.024 seconds

Effects of Aspect Ratio on Combustion Characteristics in Diesel Engine (연소실 형상비가 디젤기관의 연소특성에 미치는 영향)

  • Kwon, S.I.;Kwon, J.B.;Kim, H.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.23-32
    • /
    • 1998
  • The effect of reentrant type bowl geometry on combustion characteristics was investigated in a D.I. diesel engine. The main factor was the aspect ratio (Bowl Diameter / Bowl Depth) of bowl of combustion chamber, and the cylinder pressure, engine performance and emissions of the engine using the 4 kinds of the combustion chamber were meadured. Also, the combustion characteristics compared of the experimented and the calculated values which is used by the Hiroyasu's combustion model. The results are as follows; The effect of $d_c/H$ on ignition delay period are small. The smoke is corerelated to the heat release of the premixed and the diffusion combustion, i.g, the smoke decreased by decreasing the premixed combustion or increasing the diffusion combustion on cumulative heat release. The premixed combustion process has more effect than the diffusion combustion on smoke. The formal tendency of $d_c/H$ on engine performance has not appear.

  • PDF

Blow-off and Combustion Characteristics of a Lifted Coaxial Diffusion Flame (동축 확산 부상화염의 Blow-off와 연소 특성)

  • Kwark, Ji-Hyun;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1089-1096
    • /
    • 2003
  • An experiment was performed to investigate lift-off, blow-off and combustion characteristics of a lifted coaxial diffusion flame according to fuel jet and air velocity. A jet diffusion flame which is attached on the nozzle rim begins to be lifted with increase of air velocity, and finally becomes blow-off at higher air velocity. In experiment, blow-off limit increased with increase of fuel jet velocity, however lift-off occurred at lower air velocity. Flame structure and combustion characteristics were examined by schlieren photos, temperature distributions and emission concentration distributions. Flame temperature became higher at midstream and its RMS became larger at up and downstream with increase of air velocity. Local NO concentration decreased but $CO_2$concentration increased with increase of air velocity, which shows combustion reaction becomes close to be stoichiometric at higher air velocity in spite of lift-off.

Combustion Characteristics in Various Primary and Auxiliary Air Flux Conditions at a Coaxial Swirling Diffusion Combustor (동축선회 확산연소기의 1차 및 보조공기유량 변화에 따른 연소배출특성)

  • Lee, Y.S.;Oh, S.W.;Bae, D.S.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2002
  • The purpose of this study is to investigate the combustion emission characteristics changing auxiliary air injection in combustion field of coaxial swirling diffusion combustor. For this purpose, mean temperature, CO, CO2, O2 and HC concentration were measured by changing excess air ratio and auxiliary air injection. As a result of this study, mean temperature, CO2 emission were increased and CO emission decreased by increasing auxiliary air. Therefore, this paper showed the auxiliary air injection effected strongly on flame structure and combustion emission characteristics.

  • PDF

Effect of Oxygen Enrichment in a Swirling Diffusion Gas Burner (선회 확산버너에서 산소부화가 연소장에 미치는 영향)

  • Lee, Yong-Hoo;Lee, Jin-Seok;Lee, Woo-Seob;Lee, Do-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2002
  • To investigate the combustion characteristics of a swirling diffusion gas burner with oxygen enrichment, mean temperature, CO, $CO_2$, and HC concentrations were measured at various oxygen enrichment conditions. According to the results, the flame temperature increased and the region of high temperature was expanded with increasing oxygen concentration. The $CO_2$ concentrations increased, while the CO concentrations decreased in proportion to the increase of oxygen concentration. On the other hand, the HC concentrations were decreased and this tendency was very strong at the downstream of the combustor.

  • PDF

Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace (Laboratory Scale 연소로를 적용한 산소 메탄 MILD 연소에 대한 실험적 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2016
  • The oxygen fuel MILD (Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for flame stability, high thermal efficiency, low emissions and improved productivity. In this paper, the effect of oxygen and fuel injection condition on formation of MILD combustion was analyzed using lab scale oxygen fuel MILD combustion furnace. The results show that the flame mode was changed from a diffusion flame mode to a split flame mode via a MILD combustion flame mode with increasing the oxygen flow rate. A high degree of temperature uniformity was achieved using optimized combination of fuel and oxygen injection configuration without the need for external oxygen preheating. In particular, the MILD combustion flame was found to be very stable and constant flame temperature region at 7 KW heating rate and oxygen flow rate 75-80 l/min.

Combustion characteristics of coaxial diffusion flame with preheated air temperature and dilution level (예열공기온도와 희석비율에 따른 동축 확산 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.51-56
    • /
    • 2001
  • An experiment using preheated air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. Preheated air combustion generally produces high NOx emissions but it was known very well to reduce NOx emission by diluting the combustion air with inert gas in preheated air combustion. In our study, $N_2$ gas was used for diluent and propane was utilized for fuel. We set the combustion air temperature on 300K, 500K, 700K, 900K and dilution level from 21% to 10% in terms of oxygen concentration. NOx emission increased along increment of combustion air temperature and decreased along increment of dilution level(lowering of oxygen concentration in combustion air). Flame-off limit with dilution level enhanced, flame length became longer and the location of maximum flame temperature became lower with increasing of combustion air temperature.

  • PDF

NO Emission Characteristics of Oxygen-Enriched Combustion with $CO_2$ Recirculation in Counterflow Diffusion Flame (대향류 화염에서 $CO_2$ 재순환 산소부화연소의 NO 배출 특성)

  • Park, June-Sung;Cho, Han-Chang;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • Numerical study is conducted to grasp the flame structure and NO emissions for a wide range of oxy-fuel combustion (covering from air blown combustion to pure oxygen combustion) and for various mole fractions of recirculated $CO_2$ in $CH4-O_2/N_2/CO_2$ counterflow diffusion flames. Special concern is given to the difference of the flame structure and NO emissions between air blown combustion and oxy-fuel combustion w/o recirculated $CO_2$ and is also focused on chemical effects of recirculated $CO_2$. Air blown combustion and oxy-fuel combustion w/o recirculated $CO_2$ are shown to be considerably different in the flame structure and NO emissions. Modified fuel oxidation reaction pathways in oxygen-enriched combustion are provided in detail compared to those in air blown combustion w/o recirculated $CO_2$. The formation and destruction of NO through Fenimore and thermal mechanisms are also compared for air blown combustion and oxyegn-enriched combustion w/o recirculated $CO_2$, and the role of the recirculated $CO_2$ and its chemical effects are discussed. Importantly contributing reaction steps to the formation and destruction of NO are also estimated in oxygen-enriched combustion in comparison to air blown combustion.

  • PDF

Temperature Measurement in Concentric Diffusion Flames by Rapid Insertion Technique (급속 삽입법에 의한 화염 내부 온도 분포 측정)

  • Lee, Gyo-Woo;Chung, Young-Rok;Jurng, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.75-83
    • /
    • 1999
  • The effect of temperature distributions on soot volume fraction in double-concentric diffusion flames have been investigated experimentally. Using fine thermocouple wires and a rapid insertion mechanism, we have measured temperature without the effect of soot particles attached to the thermocouple junction, which can lower the temperature signal about 100 K by increasing the heat loss from the junction by radiation. The temperature at the flame axis is higher in the double-concentric diffusion flames than in normal co-flow diffusion flames because of the inverse diffusion flame. However, it is almost the same as that at the periphery of normal flames, on which the inverse flame does not have an effect. Thus, the lower soot concentration found in the double-concentric diffusion flame can be explained by the effect of nitrogen diffusion from the central air jet.

  • PDF

Effect of Oxygen Enriched Air on the Combustion of a Turbulent Diffusion Flat Flame (산소부화공기가 난류 확산 평면화염의 연소에 미치는 영향)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and by the high temperature flame. Flame figures, OH radical intensities, temperature distributions and emission concentrations were measured according to oxygen enriched concentration and swirl number in a turbulent diffusion flat flame. It appeared that flame figure became flat and NO concentration decreased with increase of swirl number, and that the flame temperature increased high with increase of oxygen enriched concentration. In particular, it was most significant between oxygen concentration $40{\sim}60%$.

  • PDF

Observation on Double-droplet Combustion Speed in Premixed Spray Flame (예혼합 분무화염내의 이중적 액적 연소속도에 관한 관찰)

  • Lee, Chi-Woo;Shim, Han-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • In order to elucidate the modes of double-droplet combustion speed in premixed spray flame, the difference between flame propagation speed and droplet cluster disappearance speed are experimentally investigated using a premixed spray burner system, It was confirmed that flame speed concerned with premixed-mode combustion in the spray flame was approximately 2.0 m/s in average while mean disappearance speed of droplet clusters, which were dominated by diffusion-mode combustion in downstream of the flame, was evaluated as much as 0.45 m/s. It was clarified that both characteristics of premixed-mode and diffusion-mode combustion in spray flames are of much difference in nature, even though both speed, which are supposed to depend on local properties of the spray itself and flow conditions surrounding droplet clusters, are scattered in experiments.