• 제목/요약/키워드: Diffuser flow

검색결과 425건 처리시간 0.023초

공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측 (Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape)

  • 정석훈;서현규
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.801-807
    • /
    • 2016
  • 본 논문은 전기자동차 배터리 시스템에 공기를 이용한 직접 냉각 방식을 적용하여, 공기 유로 형상에 따른 냉각 성능을 비교 연구하였다. 이를 위해, 배터리 냉각 시스템에서 모듈의 배치 형상과 발열량을 고정하고, 입 출구 면적 및 외부 Case 형상을 변경하여, 이에 따른 냉각 성능 결과를 수치 해석적으로 비교 분석하였다. 해석 결과는 배터리 내부의 공기 유동 유선(Stream line), 속도장 분포(Velocity field), 온도 분포(Temperature distributions)를 정리하여 제시하였다. 해석 결과, 외기온도 $25^{\circ}C$에서 안정적인 배터리 작동온도인 $50^{\circ}C$ 이하를 만족하기 위해서는 공기의 유입 체적이 $400m^3/h$ 이상이 되어야 함을 확인할 수 있었다. 또한, 출구 부근의 Diffuser 형상을 가지는 해석 조건에서 냉각이 끝난 공기의 배출이 원활히 진행되면서 냉각 성능이 향상되는 것을 알 수 있었다.

실내유입온기의 열유동특성과 고효율 축열에 관한 연구 (A Study on the Heat Flow Characteristics and High Efficiency Thermal Storage of Inflowing Warm Air in the Room)

  • 박이동;정운철;이도영
    • 태양에너지
    • /
    • 제17권2호
    • /
    • pp.13-22
    • /
    • 1997
  • 본 연구에서는 실내로 유입되는 온기와 실내공기사이의 온도차 및 유입속도에 따라 발생되는 부력의 영향 및 실내로 유입된 온기의 혼합특성에 관한 열유동특성을 파악하였다. 혼합도의 정의로부터 임계속도($1.2{\sim}1.6m/s$)전 후로 기하학적영향에 대하여서 혼합과의 관계를 파악할 수 있었다. 그리고 축열표율과의 관계는 속도가 크고 기준온도차가 작을수록 부력의 영향을 적게 받아서 아네모스형, 베인형 모두 높은 축열효율을 나타냈다. 그리고 속도가 클 때는 베인형이 전반적으로 우수한 축열효율을 나타냈다. 따라서 유입속도에 의한 영향이 기준온도차에 의한 영향보다 지배적임을 알 수 있었다.

  • PDF

박용 터보챠저 원심압축기의 공력설계에 대한 해석적 연구 (A Study on the Analysis for Aerodynamic design of centrifugal Compressor of the Marine Turbocharger)

  • 오국택;김홍원;갈상학;하지수;유승찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.649-654
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for centrifugal compressor of the marine middle engine turbocharger. The performance characteristics of turbocharger compressor are investigated at various operating conditions using mass flow rate and revolution speed, and computational flow analysis for impeller and diffuser at design point are performed. Preliminary design results correspond to actual compressor geometric values comparatively by applying modified slip factor. Performance prediction and flow analysis results show good agreement with experiments. Therefore, this will provide the performance prediction in preliminary design, and help to increase the design capability for optimized impeller.

  • PDF

수치 해석을 이용한 감압 회류 수조 설계 (Depressurized Circulating Water Channel Design Using CFD)

  • 부경태;조희상;신수철
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

전산유체해석을 이용한 축류펌프의 성능예측 (Prediction of Axial Pump Performance Using CFD Analysis)

  • 김민환;김종인;박진석
    • 한국전산유체공학회지
    • /
    • 제6권1호
    • /
    • pp.14-20
    • /
    • 2001
  • The CFD analysis of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump was performed. Not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicted the experimental head value. In the range of the higher flow rates, the results were also in very good agreement with the experimental data, not only in absolute value but also in term of slope. Although experimental data to be compared were not available in the range of the lower flow rates, the results well described the S-shape performance curve of the axial pump characteristic.

  • PDF

일반 비직교좌표계를 사용하는 3차원 범용 유동해석 프로그램의 개발 (A Study on the Development of General Purpose Program for the Analysis of 3-D Fluid Flow by Using a General non-Orthogonal Grid System)

  • 허남건;조원국;김광호
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3345-3356
    • /
    • 1994
  • A general purpose program, TURBO-3D, for the analysis of 3-D fluid flow in complex geometry has been developed, which employs a standard $k-\varepsilon$ turbulence model and a general nonorthogonal grid system. For the purpose of verification of the program and testing the applicability, turbulent flows in an S-shaped diffuser and turbulent flows over an backward facing step are solved and compared with the earlier results. Comparison with the results by the STAR-CD program has been also made for the same flow configuration and grid structure. The agreements are excellent and hence the program has been verified. Since the present program is applicable only on limited flow phenomena and lacks the pre-and post processor, further improvements toward these directions are being made.

역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정 (Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.

진공 이젝터-디퓨져 시스템내의 비정상 유동 과정에 관한 연구 (A Study on the Transient Flow Process in a Vacuum Ejector-Diffuser System)

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.299-302
    • /
    • 2009
  • The objective of the present study is to analyze the transient flow through theejector system with the help of a computational fluid dynamics (CFD) method. An attempt is made to investigate the interesting and conflicting phenomenon of the infinite entrainment into the primary stream without an infinite mass supply from the secondary chamber. The results obtained show that the one and only condition in which an infinite mass entrainment can be possible in such types of ejectors is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium of pressures at the onset of the recirculation zone. A steady flow in the ejector system is valid only after this point.

  • PDF

가변형 음속/초음속 이젝터 시스템에 관한 실험적 연구 (An Experimental Study of the Variable Sonic/supersonic Ejector Systems)

  • 이준희;김희동
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.554-560
    • /
    • 2005
  • A new method to improve the efficiency of a hydrogen fuel cell system was introduced by using variable sonic/supersonic ejectors. To obtain the variable area ratio of the nozzle throat to ejector throat which controls the mass flow rate of the suction flow, the ejectors used a movable cylinder inserted into a conventional ejector-diffuser system. Experiments were carried out to understand the flow characteristics inside the variable ejector system. The secondary mass flow rates of subsonic and supersonic ejectors were examined by varying the operating pressure ratio and area ratio. The results showed that the variable sonic/supersonic ejectors could control the recirculation ratio by changing the throat area ratio, and also showed that the recirculation ratio increased fur the variable sonic ejector and decreased for the variable supersonic ejector, as the throat area ratio increases.

압전 구동 방식의 Polydimethylsiloxane(PDMS) 마이크로 펌프 (Piezoelectric-Actuated Polydimethylsiloxane(PDMS) Micropump with Diffusers)

  • 김진호;김영호;김용상
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권10호
    • /
    • pp.487-491
    • /
    • 2003
  • The low-cost, simple structured micropump which is actuated by piezoelectric-discs, is fabricated with polydimethylsiloxane (PDMS) and the performances of the micropump, such as pump rate and backpressure, are characterized. The PDMS micropump with diffusers instead of passive check valves as a flow-rectifying element was fabricated. The deflection of glass diaphragm measured by atomic force microscope (AFM) is about 0.4$\mu\textrm{m}$ when applying a 150V square wave voltage at 300Hz across a 300${\mu}\ell$ thick piezoelectric disc. While the square wave driving voltage is applied to the piezoelectric disc of the actuator, the flow rate is measured by fluid displacement variation of the outlet tube. The flow rate of micropump increases with enhancing the applied voltage due to the increase of diaphragm deflection. The flow rate and the backpressure of the micropump with diffusers are about 32.9${\mu}\ell$/min and 173Pa respectively for the above mentioned deflection conditions.