• Title/Summary/Keyword: Diffuser flow

Search Result 425, Processing Time 0.023 seconds

The Experimental Analysis of Aerodynamic Sound for Fan Motor in a Vacuum Cleaner Using Laser 3-D Scanning Vibrometer and Microphone (레이저 3차원 진동측정기와 마이크로폰을 이용한 진공청소기용 팬모터의 실험적인 공력소음 분석)

  • Kwac Lee-Ku;An Jae-Sin;Kim Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.46-51
    • /
    • 2005
  • The vacuum cleaner motor runs at very high speed for suction power. Specially, motor power is provided by the impeller being rotated at very high speed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and small gap distance between the impeller and the diffuser, the level of noise in the centrifugal fan is at BPF(Blade Passage Frequency) and its harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, unsteady flow data are needed. The cause of noise is obtained by dividing the fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, an accelerometer has been used to measure vibration. However, it can not measure vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This study was conducted to perform accurate analysis of vibration and aerodynamic sound for fan motor in a vacuum cleaner using a laser vibration analyzer. A silent fan motor can be designed using the data measured in this study.

A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel (수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구)

  • Choi, Sang-Gil;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

An Experimental Study on the Supersonic Petal Ejector System (초음속 페탈 이젝터 시스템에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2145-2150
    • /
    • 2003
  • Ejector system is one of fluid machinery which can entrain the fluid in low pressure part and transport it to the higher pressure part. The ejector system has been widely used for the purpose of obtaining high-vacuum state, fluid transport, thrust augmentation, etc. It can transport a large capacity of fluid with relatively small device of no any moving parts, and thus seldom causes mechanical troubles. However, the conventional ejector system has been pointed out that its overall efficiency is quite low compared with other fluid machinery since it is derived by only the pure shear stresses. In the present study, 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7 are adopted as a primary nozzle to improve the ejector performance, and are compared with a conventional circular nozzle. The static pressures along the diffuser wall are measured to qualify the flow field inside the supersonic petal ejector system.

  • PDF

A Numerical Study on Flow Characteristics of Second Throat Exhaust Diffuser with Shock Cone Shape (램 구조물 형상에 따른 이차목 디퓨저의 유동 특성에 관한 수치적 연구)

  • Yu, Seongha;Jo, Seonghwi;Kim, Hongjip;Ko, Youngsung;Na, Jaejeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.346-351
    • /
    • 2017
  • A numerical study has been conducted to investigate flow characteristics of STED with ram structure shape. By increasing the attack angle of shock cone, vacuum pressure is increased because of oblique shock at ram structure and separation point moved to the downstream of the second throat. By increasing blockage ratio, expansion wave angle is increased at ram structure while vacuum pressure is constant.

  • PDF

Study on the Test Model With/Without of High-Altitude Test Facility for Hypersonic Propulsion (극초음속 추진기관 고공환경 시험장치 모델 유/무에 관한 연구)

  • Lee, Seongmin;Yu, Isang;Park, Jinsoo;Ko, Youngsung;Kim, Sunjin;Na, Jaejeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.632-636
    • /
    • 2017
  • In this study, we design an altitude test facility for hypersonic propulsion engine by constructing a test facility and cold flow test. Cold flow test is performed both with and without test models. The results show that the facility can simulate almost similar altitude condition without any significant change in pressure regardless of test models. We also constructed a database that might be useful for a variable test in the future.

  • PDF

An Experimental Study on the Pumping Characteristics of Diffuser/Nozzle Based Piezoelectric Micropumps with Different Geometries and Operating Conditions (압전 구동방식 마이크로 펌프에서 기하학적 형상과 작동조건에 따른 점핑특성에 대한 실험적 연구)

  • Yong, Jung-Kwon;Kim, Chang-Nyung;Kim, Chin-Uck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • In the present experimental study, the pumping performances of diffuser/nozzle based piezoelectric micropumps are estimated with different operating factors and geometries. Here, the effects of the input voltage and frequency on the pumping performances have been examined together with the influences of the positions of the inlet and outlet. The results show that the flow rate of the micropump is larger with larger input voltage with the largest flow rates for the frequency to be close to 6.0 Hz all through the current experimental study. Also, it has been found that the positions of the inlet and outlet affect much on the performance of the piezoelectric micropumps. Error estimation has been carried out for the evaluation of the pumping performance in association with the uncertainty of the measurement.

Improvement in Efficiency and Operating Range of Centrifugal Blower Stage for Sewage Aeration Blower

  • Hiradate, Kiyotaka;Kanno, Toshio;Nishida, Hideo;Shinkawa, Yasushi;Joukou, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.379-385
    • /
    • 2010
  • We developed a high-efficiency, wide-operating-range centrifugal blower stage to meet the demand for reduced total energy-consumption in sewage treatment plants. We improved the efficiency of the two-dimensional impeller using a shape optimization tool and one-dimensional performance prediction tool. A limit of the throat deceleration ratio was set to maintain the stall-margin of the impeller. The low solidity vaned diffuser and return channel were designed using a sensitivity analysis with orthogonal arrays and three-dimensional steady flow simulations. The low solidity diffuser was designed in order to improve the performance in the low-flow-rate region. The return channel was designed so that the total pressure loss in the return channel was minimized. Model tests of both the conventional and optimized blower stages were carried out, and the efficiency and operating range of both stages were compared. The optimized blower stage improved in stage efficiency by 3% and in operating range by 5% compared with the conventional blower stage.

An Experimental Study on Heat Flow Characteristics of Inflowing Cool Air in the Room (실내(室內) 유입(流入) 냉기(冷氣)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Jang, Y.G.;Pak, J.W.;Pak, E.T.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A study on a buoyancy effect by the temperature difference between a inner room air and a inflowing cool air and also by Inlet velocity can contribute greatly to enhance performance of air conditioning system, so the study on the distribution characteristics of inflowed cool air is important to analyze the cool air storage in a room. For this study, in the real-sized model room, the temperature differences between inflowing cool air and inner room air are 10, 20, $30^{\circ}C$, and the inlet velocities of inflowing cool air are 1, 2, 3m/s respectively as dynamic parameters. Also, a anemos and a vane type diffuser are used as inlet geometric conditions. Following conclusions have been obtained through this study. 1) In case of the anemos type diffuser, it is found that a dimensionless temperature profile is low and the distribution of the inflowed cool air is uniform. and also, all diffuusers have a low temperature of the inner room as increasing the inlet velocity. 2) A mixing takes place rapidly in case of the anemos type diffuser when the temperature difference is low ${\Delta}T=10^{\circ}C$ and the inletvelocity is high V=3m/s. and the mixing degree is higher with the anemos type diffuser than the vane.

  • PDF

COMPUTATIONAL ANALYSIS FOR IMPROVING UNIFORMITY OF $SNO_2$ THIN FILM DEPOSITION IN AN APCVD SYSTEM ($SnO_2$ 박막증착을 위한 APCVD Reactor 내 유량 균일도 향상에 대한 수치 해석적 연구)

  • Park, J.W.;Yoon, I.R.;Chung, H.S.;Shin, S.W.;Park, S.H.;Kim, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.567-570
    • /
    • 2010
  • With continuously increasing flat panel display size, uniformity of thin film deposition has been drawing more attentions and associated fabrication methodologies are being actively investigated. Since the convective flow field of mixture gas plays a significant role for deposition characteristics of thin film in an APCVD system, it is greatly important to maintain uniform distribution and consistent concentration of mixture gas species. In this paper, computational study has been performed for the improvement of flow uniformity of mixture gas in an APCVD reactor during thin film deposition process. A diffuser slit has bee designed to spread the locally concentrated gas flow exiting from the flow distributor. A uniform flow distributor has been developed which has less dependency on operating conditions for global flow uniformity

  • PDF

The Characteristics of Hydraulic Valve for a Passive Reactor (피동형 원자로의 Hydraulic Valve 특성 실험)

  • Kim, Sang-Nyung;Kim, Yoong-Seock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1083-1090
    • /
    • 1998
  • A kind of three-way check valve, so called hydraulic calve was proposed for the substitute of the density lock of passive reactor such as SPWR (System-Integrated Pressurized Water Reactor). The function of the valve are the separation of the borated water from main coolant loop for normal operation and the insurge of the water into the loop for shutdown and the removal of the decay power when the main coolant flow rate is not enough. To verify the operability and the characteristics of the valve, experimental works were executed with 1/3 scale model calve. Also a diffuser model was proposed for the theoretical analysis of the valve.