• 제목/요약/키워드: Difficult-to-cut Materials

검색결과 115건 처리시간 0.022초

경화처리된 합금공구강의 절삭에서 가공 표면층의 표면성상에 관한 연구 (A study on the surface integrity of machined surface layer in machining hardened STD11 steel)

  • 노상래;안상욱
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.153-160
    • /
    • 1994
  • In this study, residual stress and surface roughness were investigated experimentally to evaluate surface integrity on surface layer machined by CBN, ceramics and WC cutting tools. When machining difficult-to-cut material (hardened STD11 steel $H_{R}$C 60), residual stresses remaining in machined surface layer were mainly compressive. The increase of flank wear caused a shift of the compressive residual stress maximum to greater workpiece depths, but the changes did not penetrate the workpiece beneath a depth of 300 .mu. m. Surface roughness was influenced considerably by variations of the cutting speed and feed. In machining hard material, CBN and A1$_{2}$ $O_{3}$ ceramics cutting tool materials proved significantly superior to mixed ceramics A1$_{2}$ $O_{3}$-TiC and WC in evaluation of surface integrity.y.

  • PDF

절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향 (Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics)

  • 장성민;윤여권
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

텅스텐 카바이드 공구를 사용한 앤드밀 가공에서 Si3n4-hBN 머시너블 세라믹스의 표면특성과 공구마멸 (Surface Properties and Tool Wear of Si3n4-hBN Machinable Ceramics in Endmill Machining using Tungsten Carbide Tool)

  • 장성민;조명우
    • 한국기계가공학회지
    • /
    • 제3권1호
    • /
    • pp.15-21
    • /
    • 2004
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5, 10, 15, 20, 25 and 30%. The objectives of this paper is to evaluate the fracture phenomenon of the tungsten carbide tool and the variation of surface integrity of the manufactured machinable ceramics under various cutting conditions during end mill machining With CNC machining center.

  • PDF

이종 금속의 선삭 가공 특성에 관한 연구 (Turning Characteristics of differential materials)

    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.43-50
    • /
    • 1998
  • In the use of CNC machine tool, the unmanned production system has been growing in the manufacturing field. Thus, it is necessary to monitor adequate tool fracture during the cutting process efficiently. This experimental study is intended to investigate the development of flank wear in sysnchronous turning of differential materials(Aℓ/GC) which is used in industrial application and it is acknowledged as a machine to difficult material. In cutting process change of velocity, change of feed, and change of depth of cut were investigated on the effect of flank wear, and slenderness ratio is also investigated. The conclusions of this paper are summarized as follows; 1.Under the high cutting speed condition, the flank wear is affected by the feed and depth of cut. but the influence of feed on the flank wear is larger than the depth of cut and that is reduced when the velocity is low. 2.Under the high cutting speed, as the smaller slenderness ratio is, the shorter tool life is under the lower cutting speed, the effect of slenderness ratio on the flank wear is low. 3.Using the characteristics of cutting force, the flank wear of a tool can be detected 4. Investigating the development of flank wear, there are almost no differences between the characteristics of cutting force and feed force. Finally, these data from the differntial materials cutting process will be used in the basic field of precision and economic cutting process.

  • PDF

원자로 해체를 위한 수중 아크 금속 절단기술에 대한 연구 (A Study on Contact Arc Metal Cutting for Dismantling of Reactor Pressure Vessel)

  • 김찬규;문도영;문일우;조영태
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.22-27
    • /
    • 2022
  • In accordance with the growing trend of decommissioning nuclear facilities, research on the cutting process is actively proceeding worldwide. In general, a thermal cutting process, such as plasma cutting is applied to decommissioning a nuclear reactor pressure vessel (RPV). Plasma cutting has the advantage of removing the radioactive materials and being able to cut thick materials. However, when operating under water, the molten metal remains in the cut plane and re-solidifies. Hence, cutting is not entirely accomplished. For these environmental reasons, it is difficult to cut thick metal. The contact arc metal cutting (CAMC) process can be used to cut thick metal under water. CAMC is a process that cuts metal using a plate-shaped electrode based on a high-current arc plasma heat source. During the cutting process, high-pressure water is sprayed from the electrode to remove the molten metal, known as rinsing. As the CAMC is conducted without using a shielding gas, such as Argon, the electrode is consumed during the process. In this study, CAMC is introduced as a method for dismantling nuclear vessels and the relationship between the metal removal and electrode consumption is investigated according to the cutting conditions.

SEM 내 마이크로 절삭에 의한 초경합금재의 절삭 특성에 관한 연구 (Study on Cutting Characteristics of WC-Co with Micro Cutting in SEM)

  • 허성중
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.74-81
    • /
    • 2003
  • This paper describes that the micro-cutting of WC-Co using PCD (Polycrystalline Diamond) and PcBN (Polycrystalline Cubic Boron Nitride) cutting tools are performed with SEM(Scanning Electron Microscope) direct observation method. The purpose of this study is to present reasonable cutting conditions to obtain precise finished surface and machining efficiency. Summary of the results are shown below: (1) The thrust cutting forces tend to increase more than the principal forces as the depth of cut and the cuttlllg speed are increased preferably on orthogonal microcutting. (2) The tool wear in the flank face was formed larger than that in the rake face on orthogonal micro cutting. (3) The wear appearance for PCD tools is abraded by hard WC particles of the work materials, which lead diamond grain to be detached from the bond.

티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링 (Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium)

  • 박승섭;김화영;안중환
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

점탄성연마재 개발 및 전해가공특성에 관한 연구 (A Study on the Development of Nonwoven Abrasive Pads and Charateristics of Electrolytic Machining)

  • 김정두
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.190-195
    • /
    • 1997
  • The requirement of precision products about difficult-to-cut materials such as Cu and Aluminum alloy is becoming more and more. Because of soft materials, the exist narrow groves on surface are difficult to gotten off even on the polishing stage. It has been proved that Magnetic-Electrolytic-Abrasive Polishing (MEAP) is a efficient method to resolve this problem by using the nonwoven-abrasive pads together [1, 2]. In this study, through the experiments, their machining properties of newly developer polishing material of SiC, Al2O3 and diamond nonwoven abrasive pads have been proved. Through the experiments, the optimal machining conditions on larger cylinder shape workpiece of Cu and Aluminium alloy have been found, through the Taguchi[3] method the optimal machining conditions can be selected.

  • PDF

가공성 세라믹 절삭에서 공구의 마멸 패턴과 메카니즘 (Wear Patterns and Mechanisms of Cutting Tool in Cutting of Machinable Ceramics)

  • 장성민;백승엽
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.1-6
    • /
    • 2010
  • When the ceramic material is being machined, micro crack and brittle fracture dominate the process of material removal. Generally, ceramics are very difficult-to-cut materials and machined using conventional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Machinable ceramics used in this study contain BN powder to overcome these problem and for productivity elevation. This paper focuses on machinability evaluation during end mill process with CNC machining center in this study. Experiment for this purpose is performed for tool wear patterns and mechanism.

파인 세라믹 ($Al_2O_3$)의 被削性에 관한 硏究 (A Study on the Machinability of Fine Ceramics (($Al_2O_3$)))

  • 김성겸;이용성
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.604-610
    • /
    • 1989
  • 본 연구는 알루미나계 세라믹의 소결 다이아몬드 공구로 절삭시의 칩의 형태 와 절삭저항을 관찰하였다. 절삭 양식은 건식과 습식으로 하고, 여러 가지 적삭조건 에 따른 flank 마멸의 진행과정, 가공면의 표면거칠기에 미치는 영향 및 가공면의 크랙 상태를 조사형 현미경으로 확대 검출하여 가공상태를 정밀하게 조사, 측정하였 다.