• Title/Summary/Keyword: Differentially expressed genes(DEGs)

Search Result 165, Processing Time 0.025 seconds

Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells (SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.501-512
    • /
    • 2020
  • Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.

DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation (시토신 탈메틸화 관련 NtROS2a 유전자 발현을 제어한 RNAi 식물의 DNA microarray 분석)

  • Choi, Jang Sun;Lee, In Hye;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.231-239
    • /
    • 2016
  • To study the transcript levels of epigenetically regulated genes in tobacco, we have developed a transgenic line OX1 overexpressing NtROS2a gene encoding cytosine DNA demethylation and a RNAi plant line RNAi13. It has been reported that salt- and $H_2O_2$-stress tolerance of these transgenic lines are enhanced with various phenotypic characters (Lee et al. 2015). In this paper, we conducted microarray analysis with Agilent Tobacco 4 x 44K oligo chip by using overexpression line OX1, RNAi plant line RNAi 13, and wild type plant WT. Differentially expressed genes (DEGs) related to metabolism, nutrient supply, and various stressed were up-regulated by approximately 1.5- to 80- fold. DEGs related to co-enzymes, metabolism, and methylation functional genes were down-regulated by approximately 0.03- to 0.7- fold. qRT-PCR analysis showed that the transcript levels of several candidate genes in OX1 and RNAi lines were significantly (p < 0.05) higher than those in WT, such as genes encoding KH domain-containing protein, MADS-box protein, and Zinc phosphodiesterase ELAC protein. On the other hand, several genes such as those encoding pentatricopeptide (PPR) repeat-containing protein, histone deacetylase HDAC3 protein, and protein kinase were decreased by approximately 0.4- to 1.0- fold. This study showed that NtROS2a gene encoding DNA glycosylase related to demethylation could regulate adaptive response of tobacco at transcriptional level.

Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Jiae;Lee, Sooyeon;Song, Ki-Duk;Cha, Jihye;Dang, Hoang Vu;Tran, Ha Thi Thanh;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods: Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results: In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2'-5'-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion: Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.

Expression of Membrane Fusion Related Genes in Mouse Ovary (마우스 난소에서 막융합 관련 유전자의 발현)

  • Jung, Bok-Hae;Sung, Hyun-Ho;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Granulosa cells surround the oocyte within the ovarian follicle and play an essential role in creating conditions required for oocyte as well as follicular development. The current study was conducted to examine the gene expression profile of mouse ovaries during the primordial to primary follicle transition process. Total RNAs from mouse ovaries on day 5 and day 12 were synthesized cDNA using annealing control primers. The DEGs were cloned and their identities were analyzed by BLAST search. The Plekha5 and Anxa11 were highly expressed in primary follicle stage. By contrast, their expression was increased in granulosa cells at the primary follicle stage. We have successfully discovered a list of genes expressed in day 5 and day 12 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRI. This is a spatial-temporal regulatory mechanism on the ovarian folliculogenesis through membrane fusion. The gene expression profile from the current study would provide insight for future study on the mechanism(s) involved in primordial-primary follicular transition. This will provide information for identification of the mechanism of ovarian dysfunction.

Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation

  • Wang, Jiena;Zhu, Weiwei;Tu, Junxue;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1262-1274
    • /
    • 2022
  • Cholangiocarcinoma (CCA) is a complex and refractor type of cancer with global prevalence. Several barriers remain in CCA diagnosis, treatment, and prognosis. Therefore, exploring more biomarkers and therapeutic drugs for CCA management is necessary. CCA gene expression data was downloaded from the TCGA and GEO databases. KEGG enrichment, GO analysis, and protein-protein interaction network were used for hub gene identification. miRNA were predicted using Targetscan and validated according to several GEO databases. The relative RNA and miRNA expression levels and prognostic information were obtained from the GEPIA. The candidate drug was screened using pharmacophore-based virtual screening and validated by molecular modeling and through several in vitro studies. 301 differentially expressed genes (DEGs) were screened out. Complement and coagulation cascades-related genes (including AHSG, F2, TTR, and KNG1), and cell cycle-related genes (including CDK1, CCNB1, and KIAA0101) were considered as the hub genes in CCA progression. AHSG, F2, TTR, and KNG1 were found to be significantly decreased and the eight predicted miRNA targeting AHSG, F2, and TTR were increased in CCA patients. CDK1, CCNB1, and KIAA0101 were found to be significantly abundant in CCA patients. In addition, Molport-003-703-800, which is a compound that is derived from pharmacophores-based virtual screening, could directly bind to CDK1 and exhibited anti-tumor activity in cholangiocarcinoma cells. AHSG, F2, TTR, and KNG1 could be novel biomarkers for CCA. Molport-003-703-800 targets CDK1 and work as potential cell cycle inhibitors, thereby having potential for consideration for new chemotherapeutics for CCA.

Growth promotion effect of red ginseng dietary fiber to probiotics and transcriptome analysis of Lactiplantibacillus plantarum

  • Hye-Young Yu;Dong-Bin Rhim;Sang-Kyu Kim;O-Hyun Ban;Sang-Ki Oh;Jiho Seo;Soon-Ki Hong
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.159-165
    • /
    • 2023
  • Background: Red ginseng marc, the residue of red ginseng left after water extraction, is rich in dietary fiber. Dietary fiber derived from fruits or vegetables can promote the proliferation of probiotics, and it is a key technology in the food industry to increase the productivity of probiotics by adding growth-enhancing substances such as dietary fiber. In this study, the effect of red ginseng dietary fiber (RGDF) on the growth of probiotic bacterial strains was investigated at the phenotypic and genetic levels. Methods: We performed transcriptome profiling of Lactiplantibacillus plantarum IDCC3501 in two phases of culture (logarithmic (L)-phase and stationary (S)-phase) in two culture conditions (with or without RGDF) using RNA-seq. Differentially expressed genes (DEGs) were identified and classified according to Gene Ontology terms. Results: The growth of L.plantarum IDCC3501 was enhanced in medium supplemented with RGDF up to 2%. As a result of DEG analysis, 29 genes were upregulated and 30 were downregulated in the RGDF-treated group in the L-phase. In the S-phase, 57 genes were upregulated and 126 were downregulated in the RGDF-treated group. Among the upregulated genes, 5 were upregulated only in the L-phase, 10 were upregulated only in the S-phase, and 3 were upregulated in both the L- and S-phases. Conclusions: Transcriptome analysis could be a valuable tool for elucidating the molecular mechanisms by which RGDF promotes the proliferation of L.plantarum IDCC3501. This growth-promoting effect of RGDF is important, since RGDF could be used as a prebiotic source without additional chemical or enzymatic processing.

Hemicastration induced spermatogenesis-related DNA methylation and gene expression changes in mice testis

  • Wang, Yixin;Jin, Long;Ma, Jideng;Chen, Li;Fu, Yuhua;Long, Keren;Hu, Silu;Song, Yang;Shang, Dazhi;Tang, Qianzi;Wang, Xun;Li, Xuewei;Li, Mingzhou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • Objective: Hemicastration is a unilateral orchiectomy to remove an injured testis, which can induce hormonal changes and compensatory hypertrophy of the remaining testis, and may influence spermatogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the impact of hemicastration on remaining testicular function. Methods: Prepubertal mice (age 24 days) were hemicastrated, and their growth was monitored until they reached physical maturity (age 72 days). Subsequently, we determined testis DNA methylation patterns using reduced representation bisulfite sequencing of normal and hemicastrated mice. Moreover, we profiled the testicular gene expression patterns by RNA sequencing (RNA-seq) to examine whether methylation changes affected gene expression in hemicastrated mice. Results: Hemicastration did not significantly affect growth or testosterone (p>0.05) compared with control. The genome-wide DNA methylation pattern of remaining testis suggested that substantial genes harbored differentially methylated regions (1,139) in gene bodies, which were enriched in process of protein binding and cell adhesion. Moreover, RNA-seq results indicated that 46 differentially expressed genes (DEGs) involved in meiotic cell cycle, synaptonemal complex assembly and spermatogenesis were upregulated in the hemicastration group, while 197 DEGs were downregulated, which were related to arachidonic acid metabolism. Integrative analysis revealed that proteasome 26S subunit ATPase 3 interacting protein gene, which encodes a protein crucial for homologous recombination in spermatocytes, exhibited promoter hypomethylation and higher expression level in hemicastrated mice. Conclusion: Global profiling of DNA methylation and gene expression demonstrated that hemicastration-induced compensatory response maintained normal growth and testicular morphological structure in mice.

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

Characterization of H460R, a Radioresistant Human Lung Cancer Cell Line, and Involvement of Syntrophin Beta 2 (SNTB2) in Radioresistance

  • Im, Chang-Nim;Kim, Byeong Mo;Moon, Eun-Yi;Hong, Da-Won;Park, Joung Whan;Hong, Sung Hee
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.245-253
    • /
    • 2013
  • A radioresistant cell line was established by fractionated ionizing radiation (IR) and assessed by a clonogenic assay, flow cytometry, and Western blot analysis, as well as zymography and a wound healing assay. Microarray was performed to profile global expression and to search for differentially expressed genes (DEGs) in response to IR. H460R cells demonstrated increased cell scattering and acidic vesicular organelles compared with parental cells. Concomitantly, H460R cells showed characteristics of increased migration and matrix metalloproteinase activity. In addition, H460R cells were resistant to IR, exhibiting reduced expression levels of ionizing responsive proteins (p-p53 and ${\gamma}$-H2AX); apoptosis-related molecules, such as cleaved poly(ADP ribose) polymerase; and endoplasmic reticulum stress-related molecules, such as glucose-regulated protein (GRP78) and C/EBP-homologous protein compared with parental cells, whereas the expression of anti-apoptotic X-linked inhibitor of apoptosis protein was increased. Among DEGs, syntrophin beta 2 (SNTB2) significantly increased in H460R cells in response to IR. Knockdown of SNTB2 by siRNA was more sensitive than the control after IR exposure in H460, H460R, and H1299 cells. Our study suggests that H460R cells have differential properties, including cell morphology, potential for metastasis, and resistance to IR, compared with parental cells. In addition, SNTB2 may play an important role in radioresistance. H460R cells could be helpful in in vitro systems for elucidating the molecular mechanisms of and discovering drugs to overcome radioresistance in lung cancer therapy.

Transcriptome-wide analysis reveals gluten-induced suppression of small intestine development in young chickens

  • Darae, Kang;Donghyun, Shin;Hosung, Choe;Doyon, Hwang;Andrew Wange, Bugenyi;Chong-Sam, Na;Hak-Kyo, Lee;Jaeyoung, Heo;Kwanseob, Shim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.752-769
    • /
    • 2022
  • Wheat gluten is an increasingly common ingredient in poultry diets but its impact on the small intestine in chicken is not fully understood. This study aimed to identify effects of high-gluten diets on chicken small intestines and the variation of their associated transcriptional responses by age. A total of 120 broilers (Ross Strain) were used to perform two animal experiments consisting of two gluten inclusion levels (0% or 25%) by bird's age (1 week or 4 weeks). Transcriptomics and histochemical techniques were employed to study the effect of gluten on their duodenal mucosa using randomly selected 12 broilers (3 chicks per group). A reduction in feed intake and body weight gain was found in the broilers fed a high-gluten containing diet at both ages. Histochemical photomicrographs showed a reduced villus height to crypt depth ratio in the duodenum of gluten-fed broilers at 1 week. We found mainly a significant effect on the gene expression of duodenal mucosa in gluten-fed broilers at 1 week (289 differentially expressed genes [DEGs]). Pathway analyses revealed that the significant DEGs were mainly involved in ribosome, oxidative phosphorylation, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. These pathways are involved in ribosome protein biogenesis, oxidative phosphorylation and fatty acid metabolism, respectively. Our results suggest a pattern of differential gene expression in these pathways that can be linked to chronic inflammation, suppression of cell proliferation, cell cycle arrest and apoptosis. And via such a mode of action, high-gluten inclusion levels in poultry diets could lead to the observed retardation of villi development in the duodenal mucosa of young broiler chicken.