• Title/Summary/Keyword: Differential pulse polarography

Search Result 42, Processing Time 0.022 seconds

On the Electrochemical Reduction of O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorthioate (Fenitrothion) Pesticide in Acetonitrile Solution (Acetonitrile 용액중에서 살충제 O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorothioate (Fenitrothion)의 전기화학적 환원)

  • Il-Kwang Kim;Youn-Geun Kim;Hyun-Ja Chun
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.186-194
    • /
    • 1988
  • The electrochemical reduction of O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion) has been studied in acetonitrile solution containing surfactant micelle by direct current (DC)-differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The partially reversible electron transfer-chemical reaction(EC, EC mechanism) of fenitrothion reduction proceeded by four electron transfer to form O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate which undergoes single bond of the phosphorus atom and phenoxy group cleaves to give p-amino-m-cresol and dimethyl thiophosphinic acid as major product by two electron transfer-protonation at higher negative potential. The polarograpic reduction waves shown to suppressed due to inhibitory effect of sodium lauryl sulfate micelle solution and split up on selectivity of anionic micelle effect in two step at the first reduction peak.

  • PDF

Synthesis of 1-Benzyl-4-Iodomethyl-2-Azetidinone and Electrochemical Reduction on the Iodo Group (1-Benzyl-4-Iodomethyl-2-Azetidinone의 합성과 Iodo기에 대한 전기화학적 환원반응)

  • Kim Il Kwang;Lee Young Haeng;Lee Chai Ho;Chai Kyu Yun;Kim Yoon Geun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.70-77
    • /
    • 1991
  • 1-Benzyl-4-iodomethyl-2-azetidinone(BIMA) was synthesized and its electrochemical reduction was investigated by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible two electron transfer on reductive dehalogenation of iodo group proceeded to form 1-benzyl-4-methyl-2-azetidinone by EEC electrode reaction mechanism at the first reduction step(-1.35 volts vs. Ag-AgCl). The polarographic reduction waves separated into two reduction steps due to anionic surfactant (sodium lauryl sulfate) effects, while the waves were shifted to the positive potential as the concentration of cationic surfactant (cetyltrimethylammonium bromide) increased. Upon the basis of results on the product analysis and interpretation of polarogram with pH variable, EEC electrochemical reaction mechanism was suggested.

  • PDF

Differential Pulse Polarographic Studies on the Mixed Ligand Complexes of Cadmium-Oxalate-Citrate Systems (카드뮴-Oxalate-Citrate계의 혼합 리간드 착물에 대한 미분펄스폴라로그라피적 연구)

  • Se Chul Sohn;Tae Yoon Eom;Jung Key-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.596-600
    • /
    • 1989
  • The simple and mixed ligand complexes of cadmium-oxalate-citrate systems have been studied with differential pulse polarography at 25${\circ}$C, in the solution with constant ionic strength, ${\mu}$= 1.0 ($NaNO_3$) and pH 8.0. Using the graphical methods by DeFord-Hume and Schaap-McMasters, the overall stability constants for the mixed ligand complexes, $\beta_{ij}$, were found to be: $log\beta_{11}$ = 4.91, $log\beta_{12}$ = 4.99, and log $log\beta_{21}$ = 5.18, respectively. Various equilibria involved in the mixed system have also been discussed.

  • PDF

Electrochemical Studies on $Sm^3+$-ARS Complexes ($Sm^3+$-ARS착물의 전기화학적 연구)

  • Son, Byoung-Chan
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • Electrochemical behaviors of $Sm^3+$-ARS complexes has been investigated by d.c.polarography, differential pulse polarography and cyclic voltammetry. $Sm^3+$forms 1 : 3 adsorptive complexes with ARS.The reduction potential of complex wave $(P_2)$ shifted more negatively than the ligand wave $(P_1)$. The linear calibration curves of decreasing $P_1$ and increasing $P_2$ is obtained when $Sm^3+$ concentration varies from TEX>$2{\times}10^{-6}$ M to $3.2{\times}10^{-5}$ M.

  • PDF

Synthesis and Electrochemical Behavior of Rare Earths Metal Complexes (희토류금속 착물의 합성과 전기화학적 거동 (제 2 보))

  • Choe, Chil Nam;Jeong, O Jin;Yun, Seok Jin;Kim, Jun Tae
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.280-287
    • /
    • 1990
  • The electrochemical behavir of trivalent lanthanides [Sm(Ⅲ), Tb(Ⅲ), and Yb(Ⅲ)) complexes were investigated by the use of direct current, differential pulse polarography and cyclic voltammetry in aprotic media. These reduction peak were irreversible one-electron processes at $E_{pc}$ = -0.16 V, -0.35 V, -0.14 V, and -0.03 V of trivalent lanthanide complexes vs. Ag/AgCl electrode and the behavior of heavier lanthanides were decreased Sm > Tb > Ho > Yb order of the stability constant with decreasing atomic number.

  • PDF

$^1H$ NMR Estimation of Multi-Redox potentials of Cytochrome $c_3$ from Desulfovibrio vulgaris Hildenborough

  • 박장수;강신원;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.331-336
    • /
    • 1995
  • The macroscopic and microscopic redox potentials of tetrahemoprotein, cytochrome c3 from Desulfovibrio vulgaris(Hildenborough) (DvH) were estimated from 1H NMR and differential pulse polarography(DPP). Five sets of NMR resonances were confirmed by a redox titration. They represent cytochrome c3 molecules in five macroscopic redox states. The electron transfer in cytochrome c3 involves four consecutive one-electron steps. The saturation transfer method was used to determine the chemical shifts of eight heme methyl resonances in five different oxidation states. Thirty two microscopic redox potentials were estimated. The results showed the presence of a strong positive interaction between a pair of particular hemes. Comparing the results with those of Desulfovibrio vulgaris Miyazaki F (DvMF), it was observed that the two proteins resemble each other in overall redox pattern, but there is small difference in the relative redox potentials of four hemes.

Determination of Chloramphenicol by Differential Pulse Polarography (미분 펄스 폴라로그래피에 의한 Chloramphenicol의 정량분석)

  • Younghee Hahn;Jung-Sun Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.552-557
    • /
    • 1992
  • Chloramphenicol was studied by differential pulse polarography (DDP). A reduction peak which is dependent on pH of the solution appeared in the voltage range between zero and -1.50 volt vs. Ag/AgCl (sat. KCl) reference electrode. A plot of peak potentials (Ep) measured at room temperature (20$^{\circ}C$) vs. pH of the chloramphenicol solutions showed linear relationship changing slope (Ep/pH) at pH 8.9. The slope was -59.7 mV/pH in pH 2.7∼8.9 and -24.3 mV/pH in pH 8.9∼11.2, respectively. A log plot of peak currents (ip) vs. concentrations showed a linearity at the concentrations between 4.8 ${\times}$ 10$^{-7}$ M and 6.2 ${\times}$ 10$^{-5}$ M (0.16 ppm∼20 ppm) chloramphenicol in pH 8.0 ammonium buffer. Between the DPP method and the reference method measuring absorbance at 278 nm, the correlation coefficient was 0.996, which means an excellent linearity. The DPP method was able to detect degradation products of chloramphenicol in mild alkaline solution (pH = 8.0) more distinctly than the spectrophotometric method.

  • PDF

Electrochemical Reduction on the -S-N= Bond of N-Oxyldiethylenebenzothiazole-2-sulfenamide (N-Oxyldiethylenebenzothiazole-2-sulfenamide의 -S-N= 결합에 대한 전기화학적 환원)

  • Kim, Hae-Jin;Jung , Keun-Ho;Choi, Qw-Won;Kim, Il-Kwang;Leem, Sun-Young
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.680-688
    • /
    • 1991
  • The electrochemical reduction of N-oxyldiethylenebenzothiazole-2-sulfenamide (ODBS; vulcanization accelerator) was investigated by direct current polarography, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible electrode reduction of ODBS proceeded E-C-E-C reaction mechanism by three electrons transfer with irreversible one wave (-1.86 volts vs. Ag/0.1 M AgN$O_3$ in AN). As the results of controlled potential electrolysis, mercaptobenzothiazole (MBT), benzothiazole disulfide (MBT dimer) and extricated sulfur were products which followed by cleavage of the sulfenamide (-S-N=) bond. Upo the basis of products analysis and polarogram interpretation witli pH variable, electrochemical reaction mechanism was suggested.

  • PDF

Electrochemical Reduction Behavior of Bilirubin (Bilirubin의 전기화학적 환원거동)

  • Bae Zun Ung;Lee Heung Lark;Jung Mi Sik;Park Tae Myung
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.374-378
    • /
    • 1991
  • The electrochemical reduction behavior of Bilirubin (BR) in phosphate buffer (pH 7.8) solution was studied by DC polarography, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. In DC polarogram, two reduction waves of BR were found. The half wave potentials of two reduction waves were -1.32 and -1.51 volts vs. Ag/AaCl respectively. The current type of 1st reduction wave was diffusion-controlled and the 2$^{nd}$ reduction wave was diffusion current containing a little kinetic current. The electrochemical reduction process of BR at each reduction step was all irreversible. The prewave appeared at lower concentration than 3.4 ${\times}$ 10$^{-4}$M, this prewave was identified as adsorption prewave. And the number of electron transfered in reduction steps, n$_{app}$ was two for the 1st reduction step and one for the 2$^{nd}$ reduction step.

  • PDF

Electrochemical Behaviors and Analytical Application of Copper-1,5,9,13-Tetrathiacyclohexadecane Complex in Acetonitrile (아세토니트릴 용매 중에서 Copper-1,5,9,13-Tetrathiacyclohexadecane착물의 전기화학적 거동과 그 분석적 응용)

  • Moo-Lyong Seo;Bu-Yong Lee;Myung-Ja Choi;Bae Jun Ung;Park Tae Myeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.412-418
    • /
    • 1992
  • The electrochemical behaviors and analytical application of copper-1,5,9,13-tetrathiacyclohexadecane[16-ane-$S_4$] complex in acetonitrile(AN) solution have been investigated by the use of DC polarography and differential pulse polarography. Thus the formation constant of copper complex was $10^{3.51}$. Copper (Ⅱ) ion was found to form complex of 1-to-1 composition with [16-ane-$S_4$]. In addition, reduction step was irreversible and the reduction current was diffusion controlled. And the effect of concentration of the salting-out reagent and chelating agent and pH of aqueous phase on the determination of copper (Ⅱ) was investigated and diverse ion effect was discussed. By salting-out extraction technique, we can be determined until the concentration of copper (Ⅱ) of 60 ppb.

  • PDF