• Title/Summary/Keyword: Differential pressure venturi-cone flowmeter

Search Result 2, Processing Time 0.025 seconds

Numerical Analysis of the Differential Pressure Venturi-cone Flowmeter (차압식 Venturi-cone 유량계에 대한 유동해석)

  • Yoon J. Y.;Maeng J. S.;Lee J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.143-148
    • /
    • 1997
  • Differential pressure Venturi cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turndown ratio, low headless, and short installation pipe length requirement, etc. Like other differential pressure flowmeter, Venturi cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we use Reynolds-averaged Navier-Stokes equations and $k-{\omega}$ turbulence model. The equations are fully trans-formed in the computational coordinates, the pressure-velocity coupling is made through SIMPLER algorithm, and the equations are discretized using analytic solutions of the linearized equations(Finite Analytic Method). At the end of the paper, using the result of analysis, We propose a new shape of cone with the hope of drag reduction and high performance.

  • PDF

Numerical analysis of the differential pressure venturi-cone flowmeter (차압식 벤튜리콘 유량계에 대한 유동해석)

  • 윤준용;맹주성;이정원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.714-720
    • /
    • 1998
  • The differential pressure venturi-cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turn-down ratio, low headless, short installation pipe length requirement, and etc. Like other differential pressure flowmeters, the venturi-cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we used Reynolds-averaged Wavier-Stokes equations and k-$\omega$ turbulence model. The equations were fully transformed into the computational domain, the pressure-velocity coupling was made through SIMPLER algorithm, and the equations were discretized using finite analytic solutions of the liberalized equations(Finite Analytic Method). To control the separation phenomenon on the cone surface, we proposed a new shape of cone, and analyzed the flowfield in the new flowmeter system, and found the improvement on the performance of the new cone flowmeter.

  • PDF