• Title/Summary/Keyword: Differential gene expression

Search Result 458, Processing Time 0.026 seconds

Differential Gene Expression of Soybean[Glycine max(L.) Merr.] in Response to Xanthomonas axonopodis pv. glycines by Using Oligonulceotide Macroarray

  • Van, Kyujung;Lestari, Puji;Park, Yong-Jin;Gwag, Jae-Gyun;Kim, Moon-Young;Kim, Dong-Hyun;Heu, Sung-Gi;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • Xanthomonas axonopodis pv. glycines(Xag) is a pathogen that causes bacterial leaf pustule(BLP) disease in soybeans grown in Korea and the southern United States. Typical and early symptoms of the disease are small, yellow to brown lesions with raised pustules that develop into large necrotic lesions leading to a substantial loss in yield due to premature defoliation. After Xag infects PI 96188, only pustules without chlorotic haloes were observed, indicating the different response to Xag. To identify differentially expressed genes prior to and 24 hr after Xag inoculation to PI 96188 and BLP-resistant SS2-2, an oligonucleotide macroarray was constructed with 100 genes related to disease resistance and metabolism from soybean and Arabidopsis. After cDNAs from each genotype were applied on the oligonucleotide macroarrays with three replicates and dye swapping, 36 and 81 genes were expressed as significantly different between 0 hr and 24 hr in PI 96188 and SS2-2, respectively. Six UniGenes, such as the leucine-rich repeat protein precursor or 14-3-3-like protein, were selected because they down-regulated in PI 96188 and up-regulated in SS2-2 after Xag infection, simultaneously. Using tubulin and cDNA of Jangyeobkong(BLP-susceptible) as controls, the oligonucleotide macroarray data concurred with quantitative real-time RT-PCR(QRT RT-PCR) results in most cases, supporting the accuracy of the oligonucleotide macroarray experiments. Also, QRT RT-PCR data suggested six candidate genes that might be involved in a necrotic response to Xag in PI 96188.

  • PDF

Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

  • Lee, Young Hee;Kim, Sang Hee;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

Overexpression of a Pathogenesis-Related Protein 10 Enhances Biotic and Abiotic Stress Tolerance in Rice

  • Wu, Jingni;Kim, Sang Gon;Kang, Kyu Young;Kim, Ju-Gon;Park, Sang-Ryeol;Gupta, Ravi;Kim, Yong Hwan;Wang, Yiming;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.552-562
    • /
    • 2016
  • Pathogenesis-related proteins play multiple roles in plant development and biotic and abiotic stress tolerance. Here, we characterize a rice defense related gene named "jasmonic acid inducible pathogenesis-related class 10" (JIOsPR10) to gain an insight into its functional properties. Semi-quantitative RT-PCR analysis showed up-regulation of JIOsPR10 under salt and drought stress conditions. Constitutive over-expression JIOsPR10 in rice promoted shoot and root development in transgenic plants, however, their productivity was unaltered. Further experiments exhibited that the transgenic plants showed reduced susceptibility to rice blast fungus, and enhanced salt and drought stress tolerance as compared to the wild type. A comparative proteomic profiling of wild type and transgenic plants showed that overexpression of JIOsPR10 led to the differential modulation of several proteins mainly related with oxidative stresses, carbohydrate metabolism, and plant defense. Taken together, our findings suggest that JIOsPR10 plays important roles in biotic and abiotic stresses tolerance probably by activation of stress related proteins.

Hormonal Requirements Induced Different Regeneration Pathways in Alhagi graecorum

  • Hassanein, A.M.
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.171-179
    • /
    • 2004
  • Hormonal requirements inducing different regeneration pathways with particular emphasis on somatic embryo-genesis in Alhagi graecorum were studied. While combination of 0.5 $\mu{M}$ 2,4-dichlorophenoxyacetic acid (2,4-D), 2.5 $\mu{M}$ 6-benzylaminopurine (BAP) and 5 $\mu{M}$ 1-naphthaleneacetic acid (NAA) in MS medium induced callus formation and callus maintenance from internodal explants, each alone or in combination with other induced distinct regeneration pathway. Adventitious bud formation was induced on MS medium supplemented with 2.5 $\mu{M}$ BAP. It was improved when 2.5 $\mu{M}$ BAP was used in combination with 5 $\mu{M}$ NAA. MS medium containing 0.5 $\mu{M}$ 2,4-D or 5 $\mu{M}$ NAA induced the formation of abnormal direct somatic embryos. While increase of 2,4-D concentration (1.125-9) resulted in the formation of viable embryogenic mass, increase of NAA did not change its effect. NAA should be used in combination with 2,4-D even at low concentration (0.5 $\mu{M}$) to form embryogenic mass. In A. gaecorum, the role of 2,4-D as trigger of somatic embryogenesis and BAP as trigger of adventitious bud formation was deduced, but for maximum yield certain auxin-cytokinin ratio should be applied. Embryogenic masses characterized by high water content, low peroxidase activity, and low number of peroxidase and glutamate oxaloacetate transaminase bands in comparison with calli obtained under conditions stimulating adventitious bud formation. The resulted differential gene expression, which could be detected by native-PAGE patterns, could be used as marker for organogenic pathway in A. graecorum.

Variable expression observed in a Korean family with Townes-Brocks syndrome caused by a SALL1 mutation

  • Seo, Yeon Jeong;Lee, Ko Eun;Ko, Jung Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Townes-Brocks syndrome (TBS) is a rare genetic disorder characterized by the classic triad of congenital anomalies of the anus, thumbs, and ears, with variable expressivity. Additionally, renal malformations, cardiac anomalies, and endocrine and eye abnormalities can accompany TBS, although less frequently. TBS is inherited in an autosomal dominant fashion; however, about 50% of patients have a family history of TBS and the remaining 50% have de novo mutations. SALL1, located on chromosome 16q12.1, is the only causative gene of TBS. SALL1 acts as a transcription factor and may play an important role in inducing the anomalies during embryogenesis. Clinical features of TBS overlap with those of other multiple anomaly syndromes, such as VACTERL syndrome, Baller-Gerold syndrome, Goldenhar syndrome, cat eye syndrome, and Holt-Oram syndrome. Consequently, there are some difficulties in differential diagnosis based on clinical manifestations. Herein, we report a Korean family with two generations of TBS that was diagnosed based on physical examination findings and medical history. Although the same mutation in SALL1 was identified in both the mother and the son, they displayed different clinical manifestations, suggesting a phenotypic diversity of TBS.

Characteristics of New Estrogen Biosensor Employing Taste Principles

  • Kwon, Soon-Bae;Lee, Cil-Han;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • Measurement of estrogen concentration in bio-samples are very important for differential diagnosis of various disease or evaluation of health status. However, it is difficult to collect immediate data of estrogen concentration because they are measured by radioimmunoassay or chromatography which need time- and cost-consuming sample pre-treatment. This study was performed for development of new estrogen biosensor employing taste principles, and for evaluation of cross reactivity between various steroid hormones. Gene sequence of ligand binding domain of ${\alpha}$-human estrogen receptor (amino acid 302-553; hER-LBD) was cloned from human breast cancer cell line. The proteins of hER-LBD were produced by T7-E.coli expression system, and isolated by chromatography. hER-LBD were coated on the gold plated quartz crystal (AT-cut 9MHz), and resonance frequencies were measured by universal frequency counter. Estradiol, progesterone, testosterone, and aldosterone were used for cross reactivity of the hER-LBD. We also monitored influences of pH change in resonance frequency. The resonance frequencies of hER-LBD coated quartz crystal were decreased during increase of estrogen concentration from $15 \;{\mu}g/mL$ to $50\;{\mu}g/mL$. However, similar steroid hormones, progesterone and aldosterone, did not elicit the change in resonance frequency. Testosterone evoke weak change in resonance frequency. The new estrogen biosensor was more sensitive in pH 7.2 than in pH 7.6. These results suggest that hER-LBD coated quartz crystal biosensor is a probable estrogen biosensor.

Small RNA Transcriptome of Hibiscus Syriacus Provides Insights into the Potential Influence of microRNAs in Flower Development and Terpene Synthesis

  • Kim, Taewook;Park, June Hyun;Lee, Sang-gil;Kim, Soyoung;Kim, Jihyun;Lee, Jungho;Shin, Chanseok
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.587-597
    • /
    • 2017
  • MicroRNAs (miRNAs) are essential small RNA molecules that regulate the expression of target mRNAs in plants and animals. Here, we aimed to identify miRNAs and their putative targets in Hibiscus syriacus, the national flower of South Korea. We employed high-throughput sequencing of small RNAs obtained from four different tissues (i.e., leaf, root, flower, and ovary) and identified 33 conserved and 30 novel miRNA families, many of which showed differential tissuespecific expressions. In addition, we computationally predicted novel targets of miRNAs and validated some of them using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR477 was a terpene synthase, the primary gene involved in the formation of disease-resistant terpene metabolites such as sterols and phytoalexins. In addition, a predicted target of conserved miRNAs, miR396, is SHORT VEGETATIVE PHASE, which is involved in flower initiation and is duplicated in H. syriacus. Collectively, this study provides the first reliable draft of the H. syriacus miRNA transcriptome that should constitute a basis for understanding the biological roles of miRNAs in H. syriacus.

Differential Chemokine Signature between Human Preadipocytes and Adipocytes

  • Rosa Mistica C. Ignacio;Carla R. Gibbs;Eun-Sook Lee;Deok-Soo Son
    • IMMUNE NETWORK
    • /
    • v.16 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

The Differentially Expressed Genes by Radiotherapy in the Patients with Uterine Cervix Cancer (자궁경부암 환자에서 방사선치료 시 발현되는 유전자의 규명)

  • Seo Eun Young;Cho Moon-June;Lee Jeung Hoon;Lee Young-Sook;Na Myung-Hoon;Lee Woong-Hee;Kim Jun-Sang;Kim Jae-Sung
    • Radiation Oncology Journal
    • /
    • v.19 no.4
    • /
    • pp.389-396
    • /
    • 2001
  • Purpose : To detect differentially expressed genes in the patients with uterine cervical cancer during the radiation therapy. Materials and Methods : In patients with biopsy proven uterine cervical cancer, we took tumor tissue just before radiation therapy and at 40 minutes after external irradiation of 1.8 Gy. Total RNAs isolated from non-irradiated and irradiated tumor tissue samples were analyzed using the differential-display reverse transcription-polymerase chain reaction (DDRT-PCR). Complementary DNA (cDNA) fragments corresponding to differentially expressed messenger RNAs(mRNAs) were eluted, and cloned. The differential expression of the corresponding mRNAs was confirmed by reverse northern blot. Differentially expressed cDNA bands were sequenced. Nucleotide sequence data were analyzed in the Gene Bank and EMBL databases via the BLAST network sewer to identify homologies to known genes or cDNA fragments. Expression pattern of down-regulated clone was examined using RT-PCR in S patients undergoing radiotherapy. Results : We identified 18 differentially expressed bands by DDRT-PCR, which were eluted and cloned. There were 10 up-regulated clones and 1 down-regulated clone in reverse northern blot. One cDNA fragment had homology to chemokine receptor CXCR4, four were identified as Human ESTs in the EMBL database in EST clones. Down-regulated CxCa-11 was also down regulated in all patients. Conclusion : Using the DDRT-PCR, we have identified 10 up-regulated and 1 down-regulated clone(s) in the patients with uterine cervical cancer during the radiation therapy. The clinical relevance and the functions of these genes will be further investigated.

  • PDF