• Title/Summary/Keyword: Differential Gene Expression

Search Result 452, Processing Time 0.03 seconds

Analysis of Structure and Expression of Grapevine 2-oxoglutarate Oxygenase Genes in Response to Low Temperature

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.46-54
    • /
    • 2016
  • 2-Oxoglutarate (2OG) acts as a signaling molecule and plays a critical role in secondary metabolism in a variety of organisms, including plants. Six 2-oxoglutarate (2OG) and Fe(II) oxygenase (2OGO) genes, VlCE2OGO1 [Vitis labruscana 2-oxoglutarate (2OG) and Fe(II) oxygenase 1], VlCE2OGO2, VlCE2OGO3, VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6, which show different expression patterns upon transcriptome analysis of 'Campbell Early' grapevine exposed to low temperature for 4 weeks, were analyzed for their structure and expression. Comparison of the deduced amino acid sequences of the 2OGO genes from the V. labruscana transcripts revealed sequence similarities of 38.6% (VlCE2OGO1 and VlCE2OGO2) to 19.2% (VlCE2OGO2 and VlCE2OGO3). The lengths of these genes ranged from 1053 to 2298 bp, and they encoded 316 to 380 amino acids. The prediction of the secondary structure of the encoded proteins by Self-Optimized Prediction Method with Alignment (SOPMA) indicated that all the genes contained alpha helix (23.95 to 41.71%), extended strand (16 to 22.34%), beta turn (6.65 to 9.22%), and random coil (32.97 to 51.58%) in the analysis. Specific primers from unique regions in each gene obtained by alignment of nucleotide sequences were used in real time PCR for analysis of gene expression. All tested genes showed differential expression in grapevines exposed to low temperature. Of the six transcripts, VlCE2OGO1, VlCE2OGO2, and VlCE2OGO3 were up-regulated and VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6 were down-regulated in response to cold treatments at all tested time points. The 2OG genes can be used for elucidation of mechanisms of tolerance to cold and as valuable molecular genetic resources for selection in breeding programs for cold-hardy grapevines.

Functional Genomics in the Context of Biocatalysis and Biodegradation

  • Koh Sung-Cheol;Kim Byung-Hyuk
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.3-14
    • /
    • 2002
  • Functional genomics aims at uncovering useful information carried on genome sequences and at using it to understand the mechanisms of biological function. Elucidating the unknown biological functions of new genes based upon the genomics rationales will greatly speed up the extensive understanding of biocatalysis and biodegradation in biological world including microorganisms. DNA microarrays generate a system for the simultaneous measurement of the expression level of thousands of genes in a single hybridization assay. Their data mining (transcriptome) strategy has two categories: differential gene expression and coordinated gene expression. Furthermore, measurement of proteins (proteome) generates information on how the transcribed sequences end up as functional characteristics within the cell, and quantitation of metabolites yields information on how the functional proteins act to produce energy and process substrates (metabolome). Various composite functional genomics databases containing genetic, enzymatic and metabolic information have been developed and will contribute to the understanding of the life blue print and the new discoveries and practices in biocatalysis and biodegradation that could enrich their industrial and environmental applications.

  • PDF

Epigenetic characterization of the PBEF and TIMP-2 genes in the developing placentae of normal mice

  • Kim, Hong-Rye;Han, Rong-Xun;Diao, Yun-Fei;Park, Chang-Sik;Jin, Dong-Il
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.535-540
    • /
    • 2011
  • Reprogramming errors, which appear frequently in cloned animals, are reflected by aberrant gene expression. We previously reported the aberrant expression of TIMP-2 and PBEF in cloned placenta and differential expression of PBEF genes during pregnancy. To examine the epigenetic modifications that regulate dynamic gene expression in developing placentae, we herein analyzed the mRNA and protein expression levels of PBEF and TIMP-2 in the placentae of normal mice during pregnancy and then examined potential correlations with epigenetic modifications. DNA methylation pattern analysis revealed no difference, but ChIP assays using antibodies against H3-K9/K14 and H4-K5 histone acetylation revealed that the H3-K9/K14 acetylation levels, but not the H4-K5 acetylation levels, of the TIMP-2 and PBEF loci were significantly correlated with their gene expression levels during placentation in normal mice. These results suggest that epigenetic changes may regulate gene expression level in the developing placentae of normal mice and that inappropriate epigenetic reprogramming might be one cause of the abnormal placentae seen in cloned animals.

The Effect of Millettia Reticulatas on the Proliferation Inhibition of Human Uterine Leiomyoma Cell and Expression of Apoptosis (계혈등(鷄血藤)이 자궁근종세포(子宮筋腫細胞)의 증식억제(增殖抑制) 및 세포자멸사에 미치는 영향)

  • Lee, Hwa-Kyung;Baek, Seung-Hee;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.3
    • /
    • pp.135-149
    • /
    • 2006
  • Purpose : This study was aimed to investigate the inhibitory effect of Millettia Reticulatas on the proliferation of human uterine leiomyoma cells and the expression of gene related the mechanism of cell apoptosis. Methods : We counted the number of death cells treated with indicated concentration of Millettia Reticulatas and investigated cell death rate by MTS assay. Furthermore, flow cytometry analyis and DNA fragmentation assay were used to dissect between necrosis and apoptosis. and then we observed the differential gene expression by western blot analysis. Results : 1) The inhibitory effect on the growth of uterine leiomyoma cell treated with Millettia Reticulatas was increased in a concentration proportional. 2) The result of flow cytometry analysis. subG1 phase arrest related3 cell apoptosis was investigated 23.49% in uterine leiomyoma cell treated Millettia Reticulatas and showed the fession of proportional concentration. 3) The gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing concentration but cyclin E was none exchanged. 4) The character of apoptosis, DNA fragmentation was significantly observed the fession of proportional concentration. 5) The expression of pro-caspase3 and PARP were decreased dependent on treatment concentration. Conclusion : This study showed that Millettia Reticulatas have the inhibitory effect on the proliferation of human uterine leiomyoma cell and the effect was related with apoptosis. The apoptotic mechanism was observed that the gene expression of p27, p53, p21, p16 related cell cycle was increased according to increasing treatment concentration, induced G1 phase arrest and finally cell death was occurred. The decreased expression of pro-caspase 3 and PARP were noted that apoptosis was related with caspase pathway.

  • PDF

Expressional Profiling of Connexin Isoforms in the Initial Segment of the Male Reproductive Tract during Postnatal Development

  • Seo, Hee-Jung;Seon, Chan-Wook;Choi, In-Ho;Cheon, Yong-Pil;Cheon, Tae-Hoon;Lee, Ki-Ho
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • Functional regulation of a specific tissue or organ is controlled by a number of ways, including local cell-cell interaction. Of several forms of cell-cell junctional complexes, gap junctions are caught a great attention due to a formation of direct linkage between neighboring cells. Gap junctions are consisted of connexin (Cx) isoforms. In the present study, we evaluated expressional profiling of Cx isoforms in the rat initial segment (IS) of the male reproductive tract at different postnatal ages. The presence and expression of 13 Cx isoform mRNAs were determined by semi-quantitative real-time PCR analyses. A total of 8 Cx isoform mRNAs were detected in the IS of the male rats during postnatal development. The highest level of Cx30.3 mRNA was found at 5 months of age, while abundance of Cx31 mRNA was the highest at 1 year of age. Expression of Cx31.1 gene was relatively consistent during the postnatal development. Fluctuation of Cx32 and 37 gene expression was observed during the postnatal period. Significant elevation of Cx40 mRNA abundance was detected at 25 days of age and older ages. Expression patterns of Cx43 and 45 genes were similar with the highest level at 2 weeks of age, followed by gradual decreases at older ages. These results indicate differential regulation on expression of Cx isoforms in the rat IS during postnatal development. A complicated regulation of gene expression of Cx isoforms in the IS at different postnatal ages is suggested.

DNA Array Analysis of Changes in Gene Expression Profile in DHEA-induced PCO

  • Yu, Jeong-Min;Yoo, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young, Kim, Jee-Yun;Kang, Sung-Goo
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.112-112
    • /
    • 2002
  • Under normal conditions, women produce a single dominant follicle that participates in a single ovuation each menstrual cycle. But Polycystic ovary syndrome(PCOS) conditions, folliculogenesis does not proceed normally. This condition leads to the accumlation of large numbers of small graffian follicles in which the theca interstitial cells (TIC) produce abnormally large amounts of androgen. PCOS is probably the most common endocrine disorder, affecting women of reprodutive age with 5-10% prevalence estimate. Chronic anovulation, hyperandrogenism, hirsutism, obesity, infertility and polycystic ovaries are clinical hallmarks of women with PCOS. Its etiology remains unknown. To investigate the gene expression pattern of ovary in PCO-induced rat, we used cDNA expression analysis. Total RNA was extracted from the ovary of PCO-induced rat and reverse-transcribed in the presence of[$\alpha$$^{32}$P]-dATP Which were hybridized to Atlas$^{TM}$ Rat Toxicology 1.2 array (Clontech) representing approximately 1176 rat genes. We compared gene expression between ovary of pco-induced immature female rats and control. Differential gene expression profiles were revealed (LIFR-alpha, ADRA1A, Heat shock 90-kDa protein A, PDGFRA). Reverse transcription-polymerase chain reaction(RT-PCR) was used to validate the relative expression pattern obtained by the cDNA array. The precise relationship between the altered expression of genes and PCO is a matter of further investigation. This study was supported by Korea Science and Engineering Foundation(KOSEF)

  • PDF

Gold Sodium Thiomalate Inhibits iNOS Gene Expression in RAW 264.7 Macrophage: Differential Regulation by Gold Sodium Thiomalate and Sodium Salicylate (Gold Sodium Thiomalate에 의한 유도성 Nitric Oxide Synthase Gene의 발현억제: Gold 제제와 Sodium Salicylate의 차이점)

  • 임종호;배진영
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.230-235
    • /
    • 2002
  • Gold sodium thiomalate (GST, gold compound) is a widely used anti-arthritic, anti-rheumatic and anti-inflammatory drug that is considered a good alternative to sodium salicylate (NaSA) for individuals who cannot tolerate salicylates. Nitric oxide (NO) synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation. Recent evidence suggests that anti-inflammatory effect of NaSA lies in the inhibition of iNOS, but nothing has been reported about the direct effect of iNOS expression by GST. The present study was designed to elucidate sequentially the action mechanisms of GST and NaSA on lipopolysaccharide (LPS) plus interferon-gamma (IFN-$\gamma$) induced iNOS expression in RAW 264.7 macrophages. Both GST and NaSA inhibited NO production and iNOS protein expression in a dose dependent manner. GST inhibited iNOS mRNA expression induced by LPS plus IFN-$\gamma$, whereas NaSA did not. These findings suggest that GST may exert anti-arthritic, anti-rheumatic and anti-inflammatory effect by inhibiting iNOS expression induced by LPS plus IFN-$\gamma$ at transcriptional level, whereas NaSA exert its effect by inhibiting iNOS expression at the translational or posttranslational level.

Cloning and mRNA Expression Analysis of the Gene Encoding Phenylalanine Ammonia-Lyase of the Ectomycorrhizal Fungus Tricholoma matsutake

  • Yoon, Hyeokjun;You, Young-Hyun;Kim, Ye-Eun;Kim, Young Ja;Kong, Won-Sik;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1055-1059
    • /
    • 2013
  • The ectomycorrhizal fungus Tricholoma matsutake grows symbiotically with Pinus densiflora. Phenylalanine ammonia-lyase (E.C. 4.3.1.24) catalyzes the conversion of L-phenylalanine to trans-cinnamic acid. The role of fungal phenylalanine ammonia-lyase, however, has not been clear until now. In this study, the gene encoding phenylalanine ammonia-lyase (PAL), which was isolated from T. matsutake, was cloned and characterized. The PAL gene (tmpal) consists of 2,160 nucleotides, coding for a polypeptide containing 719 amino acid residues. The deduced amino acid sequence of tmpal from T. matsutake shows high identity (70%) with that from Laccaria bicolor. Comparative analysis of the PAL genes among T. matsutake and other species of the class Agaricomycetes showed that both active sites and binding sites were significantly conserved among these genes. The transcriptional analysis of the PAL gene revealed a differential gene expression pattern depending on the developmental stages (mycelium, primordium, stipe, pileus, and gills) of T. matsutake. These results suggest that the PAL gene in T. matsutake plays an important role in multiple physiological functions.

Differential Expression of a Chimeric nos-npt II Gene in 9 Years Old Hybrid Poplars (Populus koreana x P. nigra)

  • Noh, Eun Woon;Lee, Jae Soon;Choi, Young Im;Lee, Hyo Shin;Bae, Eun Kyung;Lee, Ji Hee
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • The expression of a chimeric transgene (nos-npt II) has been examined in 9 years old transgenic poplars (Populus koreana x P. nigra) growing in a nursery. The expression of the gene in twenty six independentely transformed plants were examined by 1) enzyme (NPT II) assay, 2) RT-PCR, and 3) resistance to kanamycin. High NPT II activities in young leaves of all the transformed plants were found even without a selection pressure for antibiotics for 9 years. However, the activity varied with the positions of leaves in the stem in that young leaves showed higher activity than did mature tissues. When leaf segments were cultured in the presence of 150 mg/l kanamycin, only those from young leaves produced vigorously growing callus. However, as in the case of NPTII assay, the leaf segments from mature leaves did not form callus well on the media. RT-PCR with nptII specific primers also showed that amplification products were observed only when RNAs from young tissues were used. The total RNA gel showed that while RNA in young leaves are relatively stable and in a large quantity, those in old leaves were mostly degraded. All the above results suggest that the gene is transcriptionally active only in young tissue even though it is attached to a constituitive promoter. Therefore, the expression of foreign gene in poplar plants seemed to be affected by the metabolic state of the cells and thus vary greatly with the developmental stages and the age of tissue.

Molecular Characterization and Expression Analysis of Equine Vascular Endothelial Growth Factor Alpha (VEGFα) Gene in Horse (Equus caballus)

  • Song, Ki-Duk;Cho, Hyun-Woo;Lee, Hak-Kyo;Cho, Byung Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.743-748
    • /
    • 2014
  • The objective of this study was to determine the molecular characteristics of the horse vascular endothelial growth factor alpha gene ($VEGF{\alpha}$) by constructing a phylogenetic tree, and to investigate gene expression profiles in tissues and blood leukocytes after exercise for development of suitable biomarkers. Using published amino acid sequences of other vertebrate species (human, chimpanzee, mouse, rat, cow, pig, chicken and dog), we constructed a phylogenetic tree which showed that equine $VEGF{\alpha}$ belonged to the same clade of the pig $VEGF{\alpha}$. Analysis for synonymous (Ks) and non-synonymous substitution ratios (Ka) revealed that the horse $VEGF{\alpha}$ underwent positive selection. RNA was extracted from blood samples before and after exercise and different tissue samples of three horses. Expression analyses using reverse transcription-polymerase chain reaction (RT-PCR) and quantitative-polymerase chain reaction (qPCR) showed ubiquitous expression of $VEGF{\alpha}$ mRNA in skeletal muscle, kidney, thyroid, lung, appendix, colon, spinal cord, and heart tissues. Analysis of differential expression of $VEGF{\alpha}$ gene in blood leukocytes after exercise indicated a unimodal pattern. These results will be useful in developing biomarkers that can predict the recovery capacity of racing horses.