• Title/Summary/Keyword: Differential Fault Attack

Search Result 23, Processing Time 0.014 seconds

Security Analysis of the Khudra Lightweight Cryptosystem in the Vehicular Ad-hoc Networks

  • Li, Wei;Ge, Chenyu;Gu, Dawu;Liao, Linfeng;Gao, Zhiyong;Shi, Xiujin;Lu, Ting;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3421-3437
    • /
    • 2018
  • With the enlargement of wireless technology, vehicular ad-hoc networks (VANETs) are rising as a hopeful way to realize smart cities and address a lot of vital transportation problems such as road security, convenience, and efficiency. To achieve data confidentiality, integrity and authentication applying lightweight cryptosystems is widely recognized as a rather efficient approach for the VANETs. The Khudra cipher is such a lightweight cryptosystem with a typical Generalized Feistel Network, and supports 80-bit secret key. Up to now, little research of fault analysis has been devoted to attacking Khudra. On the basis of the single nibble-oriented fault model, we propose a differential fault analysis on Khudra. The attack can recover its 80-bit secret key by introducing only 2 faults. The results in this study will provides vital references for the security evaluations of other lightweight ciphers in the VANETs.

Key-dependent side-channel cube attack on CRAFT

  • Pang, Kok-An;Abdul-Latip, Shekh Faisal
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.344-356
    • /
    • 2021
  • CRAFT is a tweakable block cipher introduced in 2019 that aims to provide strong protection against differential fault analysis. In this paper, we show that CRAFT is vulnerable to side-channel cube attacks. We apply side-channel cube attacks to CRAFT with the Hamming weight leakage assumption. We found that the first half of the secret key can be recovered from the Hamming weight leakage after the first round. Next, using the recovered key bits, we continue our attack to recover the second half of the secret key. We show that the set of equations that are solvable varies depending on the value of the key bits. Our result shows that 99.90% of the key space can be fully recovered within a practical time.

Security Analysis of the Whirlpool Hash Function in the Cloud of Things

  • Li, Wei;Gao, Zhiyong;Gu, Dawu;Ge, Chenyu;Liao, Linfeng;Zhou, Zhihong;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.536-551
    • /
    • 2017
  • With the advancement and deployment of leading-edge telecommunication technologies for sensing and collecting, computing related information, Cloud of Things (CoTs) has emerged as a typical application platform that is envisioned to revolutionize the daily activities of human society, such as intelligent transportation, modern logistics, food safety, environmental monitoring, etc. To avoid any possible malicious attack and resource abuse, employing hash functions is widely recognized as one of the most effective approaches for CoTs to achieve message integrity and data authentication. The Whirlpool hash function has served as part of the joint ISO/IEC 10118-3 International Standard by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). In this paper, we propose an effective differential fault analysis on Whirlpool in the byte-oriented random fault model. The mathematical analysis and experimental results show that 8 random faults on average are required to obtain the current 512-bit message input of whirlpool and the secret key of HMAC-Whirlpool. Our work demonstrates that Whirlpool and HMAC-Whirlpool are both vulnerable to the single byte differential fault analysis. It provides a new reference for the security analysis of the same structure of the hash functions in the CoTs.