• Title/Summary/Keyword: Differential Fault Analysis

Search Result 59, Processing Time 0.028 seconds

A Comparative Analysis of fault Detection Algorithm for AC Generator Protection (교류발전기 보호를 위한 고장검출 알고리즘의 비교 분석)

  • Park, Chul-Won;Shin, Kwang-Chul;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.75-77
    • /
    • 2007
  • Current percentage differential relaying has been recognized as the principal basis of main protection for stator windings of AC generator. The DWT has merit of obtaining frequency characteristics in time domain. In order to compensate for DFT's defects, we proposed fault detection algorithm using DWT. This paper describes a comparative analysis about conventional DFT-based DFR and advanced DWT-based relaying.

  • PDF

Security Analysis of the Whirlpool Hash Function in the Cloud of Things

  • Li, Wei;Gao, Zhiyong;Gu, Dawu;Ge, Chenyu;Liao, Linfeng;Zhou, Zhihong;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.536-551
    • /
    • 2017
  • With the advancement and deployment of leading-edge telecommunication technologies for sensing and collecting, computing related information, Cloud of Things (CoTs) has emerged as a typical application platform that is envisioned to revolutionize the daily activities of human society, such as intelligent transportation, modern logistics, food safety, environmental monitoring, etc. To avoid any possible malicious attack and resource abuse, employing hash functions is widely recognized as one of the most effective approaches for CoTs to achieve message integrity and data authentication. The Whirlpool hash function has served as part of the joint ISO/IEC 10118-3 International Standard by the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). In this paper, we propose an effective differential fault analysis on Whirlpool in the byte-oriented random fault model. The mathematical analysis and experimental results show that 8 random faults on average are required to obtain the current 512-bit message input of whirlpool and the secret key of HMAC-Whirlpool. Our work demonstrates that Whirlpool and HMAC-Whirlpool are both vulnerable to the single byte differential fault analysis. It provides a new reference for the security analysis of the same structure of the hash functions in the CoTs.

Geotechnical treatment for the fault and shattered zones under core foundation of fill dam (단층 및 파쇄대가 분포하는 Fill Dam 기초의 보강대책)

  • 김연중;최명달
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.19-35
    • /
    • 1992
  • aThe elastic properties of the fault zone (width; 3~12m), the shattered zone (width; over 40m) and the fresh rock zone distributed under the core foundation of fill dam in granitic gneiss have widely different range. The deformation moduli of the fresh rock zone, the fault zone and the shattered zone obtained from in situ rock tests - Plate Load Test and Bore Hole Deformation Test - show a range of $42,000~168,000kg/\textrm{cm}^2,{\;}963~2,204kg/\textrm{cm}^2{\;}and{\;}1,238~2,098kg/\textrm{cm}^2$, respectively. The differential settlements hetween the fault zone and the fresh rock zone are expected after the dam construction. Therefore, the displacement of foundation and concrete fill are evaluated using FEADAM 84 program of finite element analysis. The geometric distribution of discontinuifies obtained from the site mapping and drilling is considered in the finite element analysis. The analysis shows that the differential settlements between the fault zone and the fresh rock zone is about 6cm, while that of concrete fill is within 0.5cm.

  • PDF

Fault Current Waveform Analysis of a Flux-Lock Type SFCL According to LC Resonance Condition of Third Winding

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The flux-lock type superconducting fault current limiter(SFCL) can apply the magnetic field into the high-$T_C$ superconducting(HTSC) element by adopting the magnetic field coil in its third winding. To apply the magnetic field into the HTSC element effectively, the capacitor for LC resonance is connected in series with the magnetic field coil. However, the current waveform of third winding for the application of the magnetic field is affected by the LC resonance condition for the frequency of the source voltage and can affect the waveform of the limited fault current. In this paper, the current waveform of the third winding in the flux-lock type SFCL according to LC resonance condition during a fault period was analyzed. From the differential equation for its electrical circuit, the current equation of the third winding was derived and described with the natural frequency and the damping ratio as design parameters. Through the analysis according to the design parameters of the third winding, the waveform of the limited fault current was confirmed to be influenced by the current waveform of the third winding and the design condition for the stable fault current limiting operation of this SFCL was obtained.

Position Error Analysis of Carrier-based DGNSS Systems Under Ephemeris Fault Conditions

  • Min, Dongchan;Kim, Yunjung;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.263-269
    • /
    • 2021
  • The carrier-based differential global navigation satellite system (CD-GNSS) has been garnering significant attention as a promising technology for unmanned vehicles for its high accuracy. The CD-GNSS systems to be used for safety-critical applications should provide a certain level of integrity. The integrity of these systems must be analyzed under various conditions, including fault-free and satellite fault conditions. The systems should be able to detect the faults that can cause large biases on the user position errors and quantify the integrity risk by computing the protection level (PL) to protect the user against the faults that are left undetected. Prior work has derived and investigated the PL for the fault-free condition. In this study, the integrity of the CD-GNSS system under the fault condition is analyzed. The position errors caused by the satellite's fault are compared with the fault-free PL (PL_H0) to verify whether the integrity requirement can be met without computing the PLs for the fault conditions. The simulations are conducted by assuming the ephemeris fault, and the position errors are evaluated by changing the size of the ephemeris faults that missed detection. It was confirmed that the existing fault monitors do not guarantee that the position error under the fault condition does not exceed the PL_H0. Further, the impact of the faults on the position errors is discussed.

Application of Wavelet Transform for Fault Discriminant of Generator (발전기의 고장 판별을 위한 웨이브릿 변환의 적용)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Generators are the most complex and expensive single element in a power system. The generator protection relays should to minimize damage during fault states and must be designed for maximum reliability. A conventional CDR(Current Differential Relaying) technique based on DFT(Discrete Fourier Transform) filter have the disadvantages that the time information can lead to loss in the process of converting the signal from the time domain to the frequency domain. A WT(Wavelet transform) and WT analysis is known that it is possible with the local analysis of the fault and transient signal. In this paper, to overcome the defects in the DFT process, an application of WT for fault detection of generator is presented. This paper describes an selection of mother Wavelet to detect faults of generator. Using collected data from the fault simulation with ATPdraw, we analyzed the several mother Wavelet through the course of MLD(multi-level decomposition) using MATLAB software. Finally, it can be seen that the proposed technique using detail coefficient of Daubechies level 2 which can be fault discriminant of generator.

A Study on SCOTT Transformer Protection Relay Malfunction Case and Improvement Methodology (스코트 변압기 보호계전기 오동작 사례분석 및 개선방안 고찰)

  • Lee, Jong-Hwa;Lho, Young-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.394-399
    • /
    • 2017
  • In Korean AC power railway substations, SCOTT winding transformers are under operation to have a single phase power supply together with a phase angle of $90^{\circ}$ on the secondary side of the main transformer. In the case of an internal fault of the transformer, the transformer protection relay should be cut off on the primary side, the transformer should be inoperative to the external fault of the transformer or to the normal train operation. Reducing the malfunction of the relay through an exact fault determination is very important for securing a stable power system and improving its reliability. The main transformers are protected using Buchholtz's relay and a differential relay as the internal fault detection devices, but there are some cases of the main transformer operation under the deactivation of this protection function due to a malfunction of the differential relay. In this paper, the characteristics of the SCOTT transformer and differential relay as well as the malfunctioning of the protection relays are presented. The modeling of the SCOTT transformer protection relay was accomplished by the power system analysis program and the Comtrade file from 'A substation', which was used as the input data for the fault wave, and the harmonics were analyzed to determine if the relay operates or not. In addition, an improvement plan for malfunctioning cases through wave form analysis is suggested.

Security Analysis of the PHOTON Lightweight Cryptosystem in the Wireless Body Area Network

  • Li, Wei;Liao, Linfeng;Gu, Dawu;Ge, Chenyu;Gao, Zhiyong;Zhou, Zhihong;Guo, Zheng;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.476-496
    • /
    • 2018
  • With the advancement and deployment of wireless communication techniques, wireless body area network (WBAN) has emerged as a promising approach for e-healthcare that collects the data of vital body parameters and movements for sensing and communicating wearable or implantable healthful related information. In order to avoid any possible rancorous attacks and resource abuse, employing lightweight ciphers is most effective to implement encryption, decryption, message authentication and digital signature for security of WBAN. As a typical lightweight cryptosystem with an extended sponge function framework, the PHOTON family is flexible to provide security for the RFID and other highly-constrained devices. In this paper, we propose a differential fault analysis to break three flavors of the PHOTON family successfully. The mathematical analysis and simulating experimental results show that 33, 69 and 86 random faults in average are required to recover each message input for PHOTON-80/20/16, PHOTON-160/36/36 and PHOTON-224/32/32, respectively. It is the first result of breaking PHOTON with the differential fault analysis. It provides a new reference for the security analysis of the same structure of the lightweight hash functions in the WBAN.

Analysis of transient stability of 154KV power systems in Korea by digital computer techniques (디지탈 계산기에 의한 우리나라 154KV계통의 과도안정도 해석)

  • Man-Choon Han;Sang-Hee Park;Young-Chan Kim
    • 전기의세계
    • /
    • v.17 no.4
    • /
    • pp.18-27
    • /
    • 1968
  • Analysis of the transient stability of power systems following disturbances involves many sets of non-linear differential equations. This paper attempts to analyze the transient stability of multi-machine power systems by the step by step method, using the electronic digital computer. The critical switching times and phase angles for the main 154KV transmission system in Korea, are given from the swing curves of the probable conditions. It is concluded that the system is, in general, stable if the relay is cut off within 12 cycles after the fault. However the fault of DAEGU-SANGJU branch, accompanying much real power, makes the system unstable when the raly is cut off within 4 cycles after fault or automatic voltage regulators are equipped in this branch.

  • PDF

Development of Side Channel Attack Analysis Tool on Smart Card (사이드 채널 공격에 대한 스마트카드 안전성의 실험적 분석)

  • Han Dong-Ho;Park Jea-Hoon;Ha Jae-Cheol;Lee Sung-Jae;Moon Sang-Jae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.59-68
    • /
    • 2006
  • Although the cryptographic algorithms in IC chip such as smart card are secure against mathematical analysis attack, they are susceptible to side channel attacks in real implementation. In this paper, we analyze the security of smart card using a developed experimental tool which can perform power analysis attacks and fault insertion attacks. As a result, raw smart card implemented SEED and ARIA without any countermeasure is vulnerable against differential power analysis(DPA) attack. However, in fault attack about voltage and clock on RSA with CRT, the card is secure due to its physical countermeasures.