• Title/Summary/Keyword: Differential Braking

Search Result 23, Processing Time 0.017 seconds

Design of Static Output Feedback Controllers for Rollover Prevention (차량 전복 방지를 위한 정적 출력 피드백 제어기 설계)

  • Yim, Seongjin;Oh, Dongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • This paper presents static output feedback LQ and $H_{\infty}$ controllers for rollover prevention. Linear quadratic static output feedback controllers have been proposed for rollover prevention in such a way to minimize the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if $H_{\infty}$ controller is designed. To avoid full-state measurement for feedback requirement or sensitiveness of an observer to nonlinear model error, static output feedback is adopted. To design static output feedback controllers, Kosut's method is adopted because it is simple to calculate. Differential braking and active anti-roll bar are adopted as actuators that generate yaw and roll moments, respectively. The proposed method is shown to be effective in preventing rollover through the simulations on nonlinear multi-body dynamic simulation software, CarSim.

An Improvement Study on Brake System for KUH-1 (한국형 기동헬기의 제동장치 개선에 관한 연구)

  • Choi, Jae Hyung;Lim, Hyun-Gyu;Yoon, Jong Jin;Kang, Deuk Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.292-299
    • /
    • 2017
  • The KUH-1's Wheel Brake Assembly which is Brake System is an essential component to perform flight mission for pilot. It has function of taxing, differential braking and parking to sustain landing capability. However, the skid and abrasion of tire were occurred in mass-produce operation. Also, if it is occurred on the ground, the flight can not be performed. In this case, the defect is a major cause of the decrease in the operation rate of aircraft. In this paper, the cause of the defect in flight was identified and the failure process was organized. Also, it describes design improvements which was derived from troubleshooting and suggests verification results of flight test.

Robust Vehicle Lateral Stability Controller Against Road Bank Angles (도로 횡경사 변화에 견실한 차량 횡안정성 제어기 설계)

  • Na, Ho Yong;Cho, KunHee;You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.967-974
    • /
    • 2017
  • In this paper, a differential-braking-based yaw moment control system was developed to guarantee robust performance against road bank angle. A new target yaw rate model was established by combining the signal from a lateral acceleration sensor and 2-DOF single track model. In addition, a disturbance observer was utilized to take into account parameter uncertainties in yaw dynamics and to improve robust performance of the controller. CARSIM, which is a multi-DOF vehicle dynamic simulation tool, was used to verify the performance of the proposed controller in various driving scenarios. The simulation results indicate that the stability of the vehicle was robustly maintained by the controller, which is characterized by the reflection of the signal of a lateral acceleration sensor signal and by the compensation of the errors in the model parameters via the disturbance observer.