• Title/Summary/Keyword: Different Thickness

Search Result 4,594, Processing Time 0.029 seconds

Jangdo(Small Ornamental Knives) manufacturing process and restoration research using Odong Inlay application (오동상감(烏銅象嵌)기법을 활용한 장도(粧刀)의 제작기술 및 복원연구)

  • Yun, Yong Hyun;Cho, Nam Chul;Jeong, Yeong Sang;Jang, Chu Nam
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.172-189
    • /
    • 2016
  • In this research, literature research on the Odong material, mixture ratio, casting method and casting facility was conducted on contemporary documents, such as Cheongong Geamul. Also, a long sword was produced using the Odong inlay technique. The sword reproduction steps were as follows; Odong alloying, silver soldering alloying, Odong plate and Silver plate production, hilt and sheath production, metal frame and decorative elements, such as a Dugup (metal frame), production, Odong inlay assembly and final assembly. For the Odong alloy production, the mixture ratio of the true Odong, which has copper and gold ratio of 20:1, was used. This is traditional ratio for high quality product according to $17^{th}$ century metallurgy instruction manual. The silver soldering alloy was produced with silver and brass(Cu 7 : Zn 3) ratio of 5:1 for inlay purpose and 5:2 ratio for simple welding purpose. The true Odong alloy laminated with silver plate was used to produce hilt and sheath. The alloy went through annealing and forging steps to make it into 0.6 mm thick plate and its backing layer, which is a silver plate, had the matching thickness. After the two plates were adhered, the laminated plate went through annealing, forging, engraving, silver inlaying, shaping, silver welding, finishing and polishing steps. During the Odong colouring process, its red surface turns black by induced corrosion and different hues can be achieved depending on its quality. To accomplish the silver inlay Odong techniques, a Hanji saturated with thirty day old urine is wrapped around a hilt and sheath material, then it is left at warm room temperature for two to three hours. The Odong's surface will turn black when silver inlay remains unchanged. Various scientific analysis were conducted to study composition of recreated Odong panel, silver soldering, silver plate and the colouring agent on Odong's surface. The recreated Odong had average out at Cu 95.57 wt% Au 4.16wt% and Cu 98.04 wt% Au 1.95wt%, when documented ratio in the old record is Cu 95wt% and Au 5wt%. The recreated Odong was prone to surface breakage during manufacturing process unlike material made with composition ratio written in the old record. On the silver plate of the silver and Odong laminate, 100wt% Ag was detected and between the two layers Cu, Ag and Au were detected. This proves that the adhesion between the two layers was successfully achieved. The silver soldering had varied composition of Ag depending on the location. This shows uneven composition of the silver welding. A large quantities of S, that was not initially present, was detected on the surface of the black Odong. This indicates that presence of S has influence on Odong colour. Additional study on the chromaticity, additional chemical compounds and its restoration are needed for the further understanding of the origin of Odong colour. The result of Odong alloy testing and recreation, Odong silver inlay long sword production, scientific analysis of the Odong black colouring agent will form an important foundation of knowledge for conservation of Odong artifact.

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

Diagnostic Approach to the Solitary Pulmonary Nodule : Reappraisal of the Traditional Clinical Parameters for Differentiating Malignant Nodule from Benign Nodule (고립성 폐결절에 대한 진단적 접근 : 악성결절과 양성결절의 감별 지표에 대한 재검토)

  • Kho, Won Jung;Kim, Cheol Hyeon;Jang, Seung Hun;Lee, Jae Ho;Yoo, Chul Gyu;Chung, Hee Soon;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.500-518
    • /
    • 1996
  • Background : The solitary pulmonary nodule(SPN) presents a diagnostic dilemma to the physician and the patient. Many clinical characteristics(i.e. age, smoking history, prior history of malignancy) and radiological characteristics( i.e. size, calcification, growth rate, several findings of computed tomography) have been proposed to help to determine whether the SPN was benign or malignant. However, most of these diagnostic guidelines are based on the data collected before computed tomography(CT) has been introduced and lung cancer was not as common as these days. Moreover, it is not well established whether these guidelines from western populations could be applicable to Korean patients. Methods : We had a retrospective analysis of the case records and radiographic findings in 114 patients presenting with SPN from Jan. 1994 to Feb. 1995 in Seoul National University Hospital, a tertiary referral hospital. Results : We observed the following results ; (1) Out of 113 SPNs, the etiology was documented in 94 SP IS. There were 34 benign SP s and 60 malignant SPNs. Among which, 49 SPNs were primary lung cancers and the most common hi stologic type was adenocarcinoma. (2) The average age of patients with benign and malignant SPNs was $49.7{\pm}12.0$ and $58.1{\pm}10.0$ years, respectively( p=0.0004), and the malignant SPNs had a striking linear propensity to increase with age. (3) No significant difference in the hi story of smoking was noted between the patients with benign SPNs($13.0{\pm}17.6$ pack- year) and those with malignant SPNs($18.6{\pm}25.1$ pack-year) (p=0.2108). (4) 9 out of 10 patients with prior history of malignancy had malignant SPNs. 5 were new primary lung cancers with no relation to prior malignancy. (5) The average size of benign SPNs($3.01{\pm}1.20cm$) and malignant SPNs($2.98{\pm}0.97cm$) was not significantly different(p=0.8937). (6) The volume doubling time could be calculated in 22 SPNs. 9 SPNs had the volume doubling time longer than 400 days. Out of these, 6 were malignant SPNs. (7) The CT findings suggesting malignancy included the lobulated or spiculated border, air- bronchogram, pleural tail, and lymphadenopathy. In contrast, calcification, central low attenuation, cavity with even thickness, well-marginated border, and peri nodular micronodules were more suggestive for benign nodule. (8) The diagnostic yield of percutaneous needle aspiration and biopsy was 57.6%(19/33) of benign SPNs and 81.0%(47/58) of malignant SPNs. The diagnostic value of sputum analysis and bronchoscopic evaluations were relatively very low. (9) 42.3%(11/26) of SPNs of undetermined etiology preoperatively turned out to be malignant after surgical resection. Overall, 75.4%(46/61) of surgically resected SPNs were malignant. Conclusions : We conclude that the likelihood of malignant SPN correlates the age of patient, prior history of malignancy, some CT findings including lobulated or spiculated border, air-bronchogram, pleural tail and lymphadenopathy. However, the history of smoking, the size of the nodule, and the volume doubling time are not helpful to determent whether the SPN is benign or malignant, which have been regarded as valuable clinical parameters previously. We suggest that aggressive diagnostic approach including surgical resection is necessary in patient with SPNs.

  • PDF

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF