• Title/Summary/Keyword: Differences in pharmacokinetics

Search Result 86, Processing Time 0.039 seconds

Effect of gender on the pharmacokinetics and metabolite formation of sulfamethazine in the rabbit (토끼의 성차가 sulfamethazine의 약동학 및 대사산물 생성에 미치는 영향)

  • Yun, Hyo-in;Park, Il-hyun
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.35-39
    • /
    • 1992
  • SMZ is one of the most widely used antibacterial agents in veterinary medicine. It is also used as a growth promotant in many species of domestic animals There are marked species differences in its metabolism and pharmacokinetics. However, its pharmacokinetic and metabolism in rabbits. which are ragarded not only as good laboratorty animals hut also as good economical animals in its own, are lacking. Sex-differences in drug metabolism are well recognized in wide range of animal species including rats. Males are known to he more active than females. It is also know that there are Significant differences in the direction of metabolic pathways. But recently, female goats are reported to be more active in the metabolie capacity of SMZ than the other sex by Dutch researchers at Utrecht. Therefore, it is not easy to make general conclusicn of having higher SMZ metal-die capacity in the male compared to the opposite sex in every animal species. In this regard, the study on metabolic pattern of SMZ in rabbits, which are regarded as hervivorous, is of interest because the dietary habbits of rabbit are comparable to thai of goal, NEW Zealand White rabbits of each sex were given SMZ(35mg/kg) as a bolus injection into the marginalean, vein in order to study its pharmacokinetic profiles(using plasma) anc metabolic pattem(24h urine) as specified in the methods anc materials. 1. In the rabbit, the major metabolic pathway of SMZ was the acetylation(the formation of $N_4AcSMZ$). There were hydroxylation pathways(50HSMZ, $6CH_2OHSMZ$) as well, in the metabolism of SMZ in the rabbit, but minor pathways. 2. No sex differences in the metabolic direction of SMZ and its metabolites formation were found from the urinary excreted metabolites of SMZ out of 24h collected urine. 3. The concentration-time curves of SMZ(35mg/kg, iv) in the plasma compartment were fitted to a one-compartment open model when using a computer program(NONLIN). There was also no difference in the pharmacokinetic pattem of SMZ between two sexes. 4. The emergence of $N_4AcSMZ$ metabolized from SMZ was very fast in the plasma of the rabbit The elimination of $N_4AcSMZ$ was prolonged as compared to that of the parent drug Vie found no sex difference in the elimination pattern of $N_4AcSMZ$ in the rabbit.

  • PDF

Investigation of the Regulatory Effects of Saccharin on Cytochrome P450s in Male ICR Mice

  • Jo, Jun Hyeon;Kim, Sunjoo;Jeon, Tae Won;Jeong, Tae Cheon;Lee, Sangkyu
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Saccharin, the first artificial sweetener, was discovered in 1879 that do not have any calories and is approximately 200~700 times sweeter than sugar. Saccharin was the most common domestically produced sweetener in Korea in 2010, and it has been used as an alternative to sugar in many products. The interaction between artificial sweeteners and drugs may affect the drug metabolism in patients with diabetes, cancer, and liver damage, this interaction has not been clarified thus far. Here, we examined the effects of the potential saccharin-drug interaction on the activities of 5 cytochrome P450 (CYPs) in male ICR mice; further, we examined the effects of saccharin (4,000 mg/kg) on the pharmacokinetics of bupropion after pretreatment of mice with saccharin for 7 days and after concomitant administration of bupropion and saccharin. Our results showed saccharin did not have a significant effect on the 5 CYPs in the S9 fractions obtained from the liver of mice. In addition, we observed no differences in the pharmacokinetic parameters of bupropion between the control group and the groups pretreated with saccharin and that receiving concomitant administration of saccharin. Thus, our results showed that saccharin is safe and the risk of saccharin-drug interaction is very low.

Bioequivalency and Pharmacokinetics of Two Clarithromycin Tablets (Clarithromycin 정제의 생물학적 동등성 및 약물동태)

  • Kang, Won Ku;Park, Sun Young;Park, Yong Soon;Woo, Jong Su;Choi, Kyung Eob;Kwon, Kwang Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 1999
  • This study was carried out to compare the bioavailability of Hanmi clarithromycin (250 mg/tablet) with that of $Klaricid^{(R)}$ The bioavailability was examined on 20 volunteers who received a single dose (500 mg) of each drug in the fasting state in a randomized balanced 2-way crossover design. After dosing, blood samples were collected for a period of 12 hours. Plasma samples were analyzed for clarithromycin and roxithromycin(internal standard) by HPLC/Coulometric BCD. The pharmaco-kinetic parameters ($AUC_{0-l2hr}$, Cmax, Tmax, $AUC_{inf}$, Ka, Kel, $t_{1/2}$, Vd/F and Cl/F) were calculated from the plasma clarithromycin concentration-time data of each volunteer. The computer program 'WinNonlin' was used for compartmental analysis. One compartment model with first-order input, from order output with lag time, weighting factor $l/y^2$ was chosen as the appropriate pharmacokinetic model. The major pharmacokinetic parameters ($AUC_{0-l2hr},\;AUC_{inf}$, Cmax and Tmax) of Hanmi clarithromycin were $10.7\pm0.5\;{\mu}g{\cdot}hr{\cdot}ml^{-1},\;12.7\pm0.7\;{\mu}g{\cdot}hr{\cdot}ml^{-1},\;1.7\pm0.1\;{\mu}g/ml\;and\;2.0\pm0.2\;hr$, respectively, and those of $Klaricid^{(R)}\;were\;9.8\pm0.5\;{\mu}g{\cdot}hr{\cdot}ml^{-1},\;11.7\pm0.6\;{\mu}g{\cdot}hr{\cdot}ml^{-1},\;1.6\pm0.1\;{\mu}g/ml\;and\;2.1\pm0.1\;hr$, respectively. The differences in mean values of $AUC_{0-l2hr},\;AUC_{inf}$ and Cmax between two products were $9.88\%,\;8.94%\;and\;6.59\%$, respectively. The least significant differences at $\alpha=0.05$ for $AUC_{0-l2hr},\;AUC_{inf}$ and Cmax were $16.08\%,\;17.81\%\;and\;18.94\%$, respectively. Though the plasma clarithromycin concentrations of Hanmi clarithromycin were higher than those of $Klaricid^{(R)}$ at all observed times, the bioavailability of Hanmi clarithromycin appeared to be bioequivalent with that of $Klaricid^{(R)}$. The Ka, Kel, $t_{1/2}$, Vd/F and Cl/F of the Hanmi clarithromycin were $2.69\pm0.53\;hr^{-1},\;0.18\pm0.01 hr^{-1},\;3.9\;hr,\;248.8\pm11.4\;L\;and\;43.7\pm2.6\;L/hr$, respectively, and those of $Klaricid^{(R)} were 2.19\pm0.51\;hr^{-1},\;0.18\pm0.02\;hr^{-1},\;3.7\;hr,\;266.7\pm22.4\;L\;and\;45.3\pm2.8L/hr$, respectively. There were no statistically significant differences between two drugs in all pharmacokinetic parameters.

  • PDF

Oral Bioavailability of Levosulpiride in Korean Healthy Male Volunteers (건강한 한국인 성인 남성에서 레보설피리드 제제의 생체이용률)

  • Lee, Jung-Min;Choi, Sung-Up;Kim, Hee-Kyu;Yoon, Mi-Kyeong;Kim, Se-Hee;Youm, Jeong-Rok;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.201-208
    • /
    • 2003
  • Pharmacokinetics and oral bioavailability of levosulpiride was determined in Korean healthy male volunteers. Thirty subjects received a single oral dose (25 mg) of a tablet in a randomized $2{\times}2$ cross-over design. The plasma concentrations of levosulpiride were measured by HPLC and compared with those reported in the literature. Pharmacokinetic parameters for $Isomeric^{\circledR}$ tablet (levosulpiride 25 mg) were revealed as follows: $AUC_{inf}\;737.1{\pm}176.9\;ng{\cdot}hr/ml,\;C_{max}\;56.4{\pm}20.1\;ng/ml,\;T_{max}\;4.2{\pm}1.6\;hr,\;K_a\;1.00{\pm}1.09\;hr^{-1},\;K_{el}\;0.08{\pm}0.02\;hr^{-1},\;and\;t_{1/2}\;8.8{\pm}1.9\;hr$. The rate constant of the absorption phase was obtained based on the first-order kinetics. In the aspect of bioavailability, $Isomeric^{\circledR}$ tablet was bioequivalent to the other product $(Levopride^{\circledR}\;tablet)$ available in the Korea market. Intersubject variations and race differences were show in comparison with the published data in the literature, even though there was a linear relationship between dose ad extent of bioavailability.

Allometric analysis of tylosin tartrate pharmacokinetics in growing male turkeys

  • Pozniak, Blazej;Tikhomirov, Marta;Motykiewicz-Pers, Karolina;Bobrek, Kamila;Switala, Marcin
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.11
    • /
    • 2020
  • Background: Despite common use of tylosin in turkeys, the pharmacokinetic (PK) data for this drug in turkeys is limited. Within a few months of growth, PK of drugs in turkeys undergoes changes that may decrease their efficacy due to variable internal exposure. Objectives: The objective of this study was to investigate the influence of age on the PK of a single intravenous (i.v.) and oral administration of tylosin to turkeys at a dose of 10 and 50 mg/kg, respectively. Methods: Plasma drug concentrations were measured using high-performance liquid chromatography with UV detection. The PK parameters were assessed by means of non-compartmental approach and were subjected to allometric analysis. Results: During a 2.5-month-long period of growth from 1.4 to 14.7 kg, the median value for area under the concentration-time curve after i.v. administration increased from 2.61 to 7.15 mg × h/L and the body clearance decreased from a median of 3.81 to 1.42 L/h/kg. Over the same time, the median elimination half-life increased from 1.03 to 2.96 h. For the oral administration a similar trend was noted but the differences were less pronounced. Bioavailability was variable (5.76%-21.59%) and age-independent. For both routes, the plasma concentration of the major tylosin metabolite, tylosin D, was minimal. Protein binding was age-independent and did not exceed 50%. Allometric analysis indicated a relatively poor predictivity of clearance, volume of distribution and elimination half-life for tylosin in turkeys. Conclusions: Age has a significant impact on tylosin PK in turkeys and dosage adjustment may be needed, particularly in young individuals.

Biotransformation of Theophylline in Cirrhotic Rats Induced by Carbon Tetrachloride or N,N-Dimethylnitrosamine (흰쥐에서 사염화탄소 또는 N,N-Dimethylnitrosamine에 의한 간경화시 Theophylline의 생체내변환)

  • Park, Eun-Jeon;Kim, Jaebaek;Sohn, Dong Hwan;Ko, Geonil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.55-61
    • /
    • 1999
  • The object of this work was to study the pharmacokinetic differences and the cause of these differences in cirrhotic rats induced by N,N-dimethylnitrosamine or carbon tetrachloride treatment when aminophylline (8 mg/kg as theophylline, i.v.) was injected. The concentrations of theophylline and its major metabolite (1,3-dimethyluric acid) in plasma were determined by HPLC. In addition, formation of 1,3-dimethyluric acid from theophylline in microsomes was determined. In cirrhotic rats, the systemic clearance of theophylline was reduced to $17\%$ of the control value while AUC (area under the plasma concentration-time curve) and $(t_{1/2})_{\beta}$ were increased to about 6 fold and 10 fold, respectively. The formation of 1,3-dimethyluric acid was decreased to $33-41\%$ of the control value in microsomes of cirrhotic rat liver. From these results, it can be concluded that in cirrhotic rats induced by N,N-dimethylnitrosamine or carbon tetrachloride the total body clearance of theophylline is markedly reduced due to a reduced hepatic metabolism.

  • PDF

Pharmacokinetics of Omeprazole-Resin by Crossover Design and the Variation of Absorption upon pH Change in the Guts of the Rat and the Rabbit (Omeprazole 수지염의 흰쥐와 토끼에서의 위장관내 산도변화에 따른 흡수변화 및 교차시험법에 의한 약물동태연구)

  • 권광일;심상호
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.401-410
    • /
    • 1995
  • Pharmacolinetic profiles of omeprazole enteric coated granules including Ramezole$^\circledR$, Losec$^\circledR$, omeprazole-Na and omeprazole-resin salt were studied using the crossover design in rats and rabbits. The absorption variance of the preparations at the altered pH condition of the gastrointestinal tract was also studied. After oral administration of four omeprazole enteric coated pellets (10mg/kg) with and without concomitant administration NaHCO$_{3}$ (5 mg/ml, 60 mM) in the rats, the differences of absorplion rate and extent were evaluated. In the NaHCO$_{3}$, administration group, the T$_{max}$ appeared to be 2~10 times shorter than water administration group, and the $C_{max}$ also increased to about 4 times, and the AUC increased to about 2.5 times. Pharmacokinetic parameters of four omeprazole enteric coated pellets in rats showed no statistical significance (ANOVA, P>0.05) in both groups. In the crossover study, the second dosed drug showed 4~5 times increased bioavailability than first dosed drug, which shows the strong carry-over effect of acid secretion of the first dosed drug. The differences of the pharmacokinetic parameters of the two test formulations (Losec$^\circledR$ and omeprazole-resin) showed no statistical significance.

  • PDF

Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

  • Lee, Chong-Ki;Choi, Jun-Shik;Bang, Joon Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.245-251
    • /
    • 2013
  • The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration($IC_{50}$) of 4.1 ${\mu}M$ and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the $AUC_{0-{\infty}}$ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.

Pharmacokinetics and Bioequivalence Evaluation of Risperidone in Healthy Male Subjects with Different CYP2D6 Genotypes

  • Cho, Hea-Young;Lee, Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.525-533
    • /
    • 2006
  • The aim of this study was to evaluate the bioequivalence of risperidone in healthy male subjects representing different CYP2D6 genotypes with respect to risperidone, 9-hydroxyrisperidone (9-OH-risperidone), and active moiety. A total of 506 Korean subjects were genotyped for $CYP2D6^*10$ by means of allele-specific polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Based on the genotype analysis, 24 subjects, 7 homozygous for $CYP2D6^*1$ for $^*10$, and 7 heterozygous for $^*10$, were recruited and received a single oral dose of 2 mg risperidone tablet in this study. Serum concentrations of risperidone and 9-OH-risperidone up to 48 h were simultaneously determined. There were no significant differences of the active moiety, risperidone, and 9-OH-risperidone between the two preparations in AUC_{0-{\propto}}$ and $C_{max}$. The 90% confidence intervals (Cls) for the ratio of means of the log-trans-formed AUC_{0-{\propto}}$ and $C_{max}$ for the active moiety, risperidone, and 9-OH-risperidone were all within the bioequivalence acceptance criteria of 0.80-1.25. The $CYP2D6^*10$ allele particularly was associated with higher serum concentrations of risperidone and the risperidone/9-OH-risperidone ratio compared with the $CYP2D6^*1$ allele. The results demonstrate that the two preparations of risperidone are bioequivalent and it can be assumed that they are therapeutically equivalent and exchangeable in clinical practice. Furthermore, the pharmacokinetic parameters of risperidone and the risperidone/9-OH-risperidone ratio are highly dependent on the CYP2D6 genotypes.

The Influence of Assay Error Weight on Gentamicin Pharmacokinetics Using the Bayesian and Nonlinear Least Square Regression Analysis in Appendicitis Patients

  • Jin, Pil-Burm
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.598-603
    • /
    • 2005
  • The purpose of this study was to determine the influence of weight with gentamicin assay error on the Bayesian and nonlinear least squares regression analysis in 12 Korean appen dicitis patients. Gentamicin was administered intravenously over 0.5 h every 8 h. Three specimens were collected at 48 h after the first dose from all patients at the following times, just before regularly scheduled infusion, at 0.5 h and 2 h after the end of 0.5 h infusion. Serum gentamicin levels were analyzed by fluorescence polarization immunoassay technique with TDxFLx. The standard deviation (SD) of the assay over its working range had been determined at the serum gentamicin concentrations of 0, 2, 4, 8, 12, and 16 ${\mu}g$/mL in quadruplicate. The polynominal equation of gentamicin assay error was found to be SD (${\mu}g$/mL) = 0.0246-(0.0495C)+ (0.00203C$^2$). There were differences in the influence of weight with gentamicin assay error on pharmacokinetic parameters of gentamicin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynominal equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result would be improved dosage regimens and better, safer care of patients receiving gentamicin.