• 제목/요약/키워드: Diethyl phosphate

검색결과 17건 처리시간 0.019초

디에틸 ${\alpha}$-페닐비닐인산과 아크릴로니트릴 및 말레산무수물의 자유라디칼 혼성중합 (Copolymerization of Diethyl ${\alpha}$-Phenylvinyl Phosphate with Acrylonitrile and Maleic Anhydride)

  • 진정일;심홍구;이수민
    • 대한화학회지
    • /
    • 제27권4호
    • /
    • pp.287-293
    • /
    • 1983
  • 자유라디칼 개시제에 의한 디에틸 ${\alpha}$-페닐비닐 인산(DEPVP)과 아크릴로니트릴(AN) 및 말레산 무수물(MAnh)의 혼성중합 연구를 행하였다. 개시제로는 과산화벤조일을 사용하였으며 중합온도는 $70^{\circ}C$이었다. 단위체 반응성비는$ r_1(AN) = 0.77, r_2(DEPVP) = 0.002 $이었으며, 이 값으로 부터 DEPVP의 Alfrey-Price 상수 Q=0.012, e=-1.35를 얻었다. 이와 대조적으로 DEPVP와 MAnh와의 자유라디칼 혼성중합은 과산화 벤조일을 개시제로 사용하여 $70^{\circ}C$에서 클로로포름 용액중에서 행한 결과 초기 단위체의 농도비에 무관하게 1 : 1 교대 혼성 중합체를 형성하였으며, 두 단위체의 몰비가 MAnh / DEPVP = 7 / 3일때 중합속도가 최대였다. 핵자기 공명 분광법으로 구한 DEPVP와 MAnh의 전하이동 착물의 평형상수는 $21^{\circ}C$ 클로로포름 용액에서 0.085 l/mol이었다. 혼성 중합체중 DEPVP의 함량이 증가함에 따라 AN/DEPVP 쌍에서는 환산점성도가 감소함을 보였고 MAnh/DEPVP쌍에서는 변화가 별로 없었다

  • PDF

Chemical Modification of Extracellular Cytosine Deaminase from Chromobacterium violaceum YK 391

  • Kim, Tae-Hyun;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.581-587
    • /
    • 1998
  • Essential amino acids involved in the catalytic role of the extracellular cytosine deaminase from Chromobacterium violaceum YK 391 were determined by chemical modification studies. The enzyme activity required the reduced form of Fe (II) ion, since the enzyme was inhibited by ο-phenanthroline. The enzyme activity was completely inhibited by the chemical modifiers, such as p-chloromercuribenzoate (p-CMB), p-hydroxymercuribenzoate, and chloramine-T at 1 mM each. The enzyme activity was also markedly inhibited by pyridoxal-5'-phosphate, diethyl pyrocarbonate, and phenylmethylsulfonyl fluroride at 1 mM each. The inactivation of the enzyme activity with p-CMB was reversed by a high concentration of cytosine. Furthermore, the inactivation of the enzyme activity with p-CMB was also reactivated by 1 mM dithiothreitol, 1 mM 2-mercaptoethanol, 1 mM cysteine-HCI, 10% ethyl alcohol, and 10% methyl alcohol. These results suggested that cysteine and methionine residues might be located in or near the active site of the enzyme, while lysine, histidine, and serine residues might be indirectly involved in the enzyme activity.

  • PDF

Purification and Partial Characterization of Thermostable Carboxyl Esterase from Bacillus stearothermophilus L1

  • Kim, Hyung-Kwoun;Park, Sun-Yang;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.37-42
    • /
    • 1997
  • A bacterial strain L1 producing a thermostable esterase was isolated from soil taken near a hot spring and identified as Bacillus stearothermophilus by its microbiological properties. The isolated thermostable esterase was purified by ammonium sulfate fractionation, ion .exchange and hydrophobic interaction chromatographies. The molecular weight of the purified enzyme was estimated to be 50,000 by SDS-PAGE. Its optimum temperature and pH for hydrolytic activity against PNP caprylate were $85^{\circ}C$ and 9.0, respectively. The purified enzyme was stable up to $70^{\circ}C$ and at a broad pH range of 4.0-11.5 in the presence of bovine serum albumin. The enzyme was inhibited by phenylmethylsulfonyl fluoride and diethyl p-nitrophenyl phosphate, indicating the enzyme is a serine esterase. The enzyme obeyed Michaelis-Menten kinetics in the hydrolysis of PNPEs and had maximum activity for PNP caproate ($C_6$) among PNPEs ($C_2-C_12$) tested.

  • PDF

2-Hydroxy-5-nitrobenzoic acid와 3-hydroxy-4-nitrobenzoic acid의 유기인계와 카바메이트계 유도체 합성 및 생물활성 (Synthesis and biological activities of organophosphate and carbamate compounds derived from 2-hydroxy-5-nitrobenzoic acid and 3-hydroxy-4-nitrobenzoic acid)

  • 최달순;경석헌;권오경;성기석
    • 농약과학회지
    • /
    • 제2권1호
    • /
    • pp.12-17
    • /
    • 1998
  • 버드나무 껍질중의 배당체인 salicin으로부터 유래된 salicylic acid와 그 유사화합물인 3-hydroxy benzoic acid의 질산화된 중간체를 출발물질로 하여 몇몇의 알콜과 에스테르화반응을 거쳐 유기인계 및 카바메이트계 화합물의 전구체를 합성하였다. 합성된 전구체의 수산기에 diethylchlorophosphate와 methyl isocyanate를 반응시켜 유기인계 및 카바메이트계 화합물 11종을 합성하였다. 합성된 화합물은 살충, 살균활성실험을 실시하였다. 유기인계 화합물의 벼멸구에 대한 활성은 500 ppm의 농도에서 O-(2-carbomethoxy-4-nitro phenyl) O,O-diethylphosphate 화합물이 96%의 살충력을 보였다. 반면 carbamate 화합물의 경우는 500ppm농도에서 살충력이 전혀 나타나지 않았다. 살균효과는 유기인계 화합물인 경우 도열병에 대해서 ester에 관계없이 250 ppm농도에서 95% 이상의 방제가를 나타냈으며, 그 이외의 병원균에서는 낮은 방제가를 보였다.

  • PDF

Xanthomonas palargonii 5S rRNA의 고차원 구조 (Higher Order Structure of 5S rRNA from Xanthomonas palargonii)

  • 조봉래;김상범;이영훈;박인원
    • 대한화학회지
    • /
    • 제39권9호
    • /
    • pp.734-740
    • /
    • 1995
  • Xanthomonas palargonii 5S rRNA의 일차구조 및 이차구조를 결정하고 에틸니트로소 우레아, Pb2+, 황산 이메틸 , 피로탄산 이에틸 들의 화학 탐침과 몇 가지 효소 탐침을 사용하여 고차원 구조를 분석하였다. 에틸니트로소 우레아는 삼차 상호작용에 관련되는 포스포디에스테르 결합을 조사하는데 사용되었다. Mg2+이 있을 때 에틸니트로소 우레아에 의한 변형에 대해서 저항성이 있는 자리는 불안정한 d 나선의 Nucleotides G72, A73, G75, A78, G98, G100, A101 들, c고리의 C36, C37, C39, C41들, 그리고 C 줄기의 A29, G33 들이다.이러한 결과와 Pb2+에 의한 가수분해 반응과 화학 탐침과 효소 탐침을 사용하여 얻은 결과들을 종합해 봄으로써 5S 의 b-C 구역과 d 나선 구역은 5S rRNA의 삼차 상호작용에서 돌쩌귀의 구실을 할 것으로 추정할 수 있었다.

  • PDF

페노프로펜 체내동태 연구를 위한 혈청 중 페노프로펜의 HPLC 정량법 개발 및 검증 (Development and Validation of an HPLC Method for the Pharmacokinetic Study of Fenoprofen in Human)

  • 조혜영;강현아;김윤균;사홍기;이용복
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권6호
    • /
    • pp.423-429
    • /
    • 2005
  • A selective and sensitive reversed-phase HPLC method for the determination of fenoprofen in human serum was developed, validated, and applied to the pharmacokinetic study of fenoprofen calcium. Fenoprofen and internal standard, ketoprofen, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Luna C18(2) column with the mobile phase of acetonitrile-3 mM potassium dihydrogen phosphate (32:68, v/v, adjusted to pH 6.6 with phosphoric acid). Detection wavelength of 272 nm and flow rate of 0.25 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed fenoprofen concentration $(2\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-100\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 1 mL of serum was $0.05\;{\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.27 to 109.20% for fenoprofen with overall precision (% C.V.) being 5.51-11.71 %. The relative mean recovery of fenoprofen for human serum was 81.7%. Stability (freeze-thaw, short and long-term) studies showed that fenoprofen was not stable during storage. But, extracted serum sample and stock solution were allowed to stand at ambient temperature for 12 hr prior to injection without affecting the quantification. The peak area and retention time of fenoprofen were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of fenoprofen in human serum samples for the pharmacokinetic studies of orally administered Fenopron tablet (600 mg as fenoprofen) at three different laboratories, demonstrating the suitability of the method.

고려인삼에 있어서의 페놀 산화효소의 항산화물질 (PHENOLOXIDASE AND ANTIOXIDANT IN KOREAN GINSENG)

  • Park E.Y.;Luh B.S.;Branen A.L.
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1984년도 학술대회지
    • /
    • pp.257-275
    • /
    • 1984
  • Enzymatic browning is considered desirable in tea and tobacco processing but undesirable in many fruits processing at the present time. It is necessary to understand the nature of the enzyme, phenoloxidase, in order to control browning reactions, and extend its effects to formation of browning products as antioxidants in ginseng. Ginseng exhibits antioxidant activity when incorporated with turkey dark meat patties. The activity in red ginseng showed about two times stronger than white ginseng. One of the phenolic antioxidants from fresh, white and reprocessed white ginseng was identified as phenol 2.6 Bis(1.1 dimethyl ethyl) 4-methyl among several unknown compounds by GC/mass spectrometer. In red ginseng, no phenol 2.6 Bis (1.1 dimethyl ethyl) 4-methyl was detected, the compound may be polymerized by phenoloxidase and form some higher molecular compounds which may possess high antioxidant activity. Phenoloxidase isozymes in fresh Korean ginseng (panax ginseng C.A. Meyer) were extracted with phosphate buffer at pH 7.3. The isozymes were purified through ammonium sulfate fractionation, dialysis and chromatography on a DEAE-cellulose column. Two groups of phenoloxidase were shown to be present, one in the floating agglomerated group and the other in the precipitate. group from the 0.85 saturation ammonium sulfate. The DEAE-cellulose column chromatography, the phenoloxidase isozyme present in the precipitate appears as the first peak (I), and that in the agglomerate in the second peak (II). Isozyme I showed higher activity with catechin and catechal, and isozyme II showed higher activity with p-cresol. The isozyme showed two optimum pH activity one at pH 4.5 and the other at 8.5 with catechin as substrate. Korean ginseng phenoloxidase has high heat stability. When heated at $75^{\circ}C$ for 2 hours, its activity remained $90\%\;and\;80\%$ on phenoloxidase I and II respectively. Phenoloxidase I was most active on (+) catechin followed by p-cresal, catechol and epicatechin. Phenoloxidase II was most active on p-cresal followed by (+) catechin, catechol, p-coumanic acid and epicatechin. Sodium bisulfite, sodium cyanide, ascorbic acid glutachion in the oxidized form, sodium diethyl dithiocarbomate and ethylendiamine tetra acetate (EDTA) acted as inhibitors. Red ginseng color development was initiated by phenoloxidase and finished by a followed sun drying process. The antiaging activity of ginseng may be initiated by the antioxidant in the ginseng.

  • PDF