• Title/Summary/Keyword: Diesel spray penetration

Search Result 152, Processing Time 0.027 seconds

A Study on Spray Characteristics of Diesel-Water Emulsion with Ultra High Pressure (초고압 경유-물 혼합연료의 분무특성에 관한 연구)

  • Jeong, D.Y.;Lee, J.T.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • Spray characteristics on diesel- water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure. Spray Patterns were visualized under various water content and injection pressures. Spray tip penetration was increased and spray angle decreased in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure.

  • PDF

A study on the spray and flame by optically accessible D.I. diesel engine : analysis by Schlieren method and diffused background illumination method (가시용 직분식 디젤기관의 분무와 화염에 관한 연구)

  • 안수길;이덕보;라진홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.9-23
    • /
    • 1995
  • To analyze the spray and flame in D.I. diesel engine, the visualizing methods by schlieren photograph and diffused background illumination photograph with high speed camera are applied to optically accessible D.I.diesel engine. Wcaporating spray, spray droplets and brightness flame are taken with high speed camera by visuallizing method in accordance with various suction air temperature and injection time. The spray and flame image on the film was analyzed by image analyzer. The optically accessible D.I. diesel engine had the similar pressure characteristic to the real D.I. diesel engine. Experimental results showed that shadow areas of the evaporating spray were extended at higher suction air temperature, spray droplets had a max. Penetration length and their penetrating patterns were dependent on the surrounding gas temperature, and flame size after ignition was largely governed by the evaporated fuel quantity at ignition point and by the surrounding gas condition due to piston motion.

  • PDF

ATOMIZATION PROCESS OF DIESEL FUEL SPRAY IN THE INITIAL STAGE OF INJECTION

  • KO K. N.;LEE C. S.;HUH J. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • An experimental investigation has been carried out to reveal the atomization process of the diesel fuel spray. The spray injected through a single hole nozzle was taken by a camera on the opposite side of a stroboscope for macroscopic observation or a nanolite for microscopic observation. The effect of nozzle aspect ratio was analyzed with disintegration phenomena of the diesel spray. Based on the enlarged spray photograph, atomization process was observed in detail and further the spray cone angle was measured under various ambient pressures. The result shows that atomization of diesel spray in early stage of injection is mainly progressed in the vicinity of spray periphery region except the region close to the nozzle exit and spray head region. The spray cone angle is nearly constant under the pressurized condition, while it decreases with elapsing time under the atmospheric condition.

Effect of Injection Parameters on Diesel Spray Characteristics (디젤분무 특성에 미치는 분사인자의 영향)

  • Sim Song-Cheol;Jung Byung-Kook;Ahn Byoung-Kyu;Kim Jang-Hein;Jung Jae-Yeon;Song Kyu-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • The characteristics of diesel spray have effect on the engine Performance such as power. fuel consumption and emissions. Therefore, This study was Performed to investigate the effect of various injection parameters. In this study. the experiment is performed by using the high temperature and high pressure chamber. Spray behaviors are visualized by using the high speed camera and spray angle. Penetration etc. are measured. Experimental results are summarized as follows ; 1) Correlations of spray Penetration is expressed as follows $$0 $$t_b 2) Correlations of spray Angle is expressed as follows $$T_a=293K \;;\; tan({\theta}/2)=0.59({\rho}_a/{\rho}_f)^{0.437}$$ $$T_a=473K\;;\; tan({\theta}/2)=0.588({\rho}_a/{\rho}_f)^{0.404}$$ 3) The measured macro characteristics - spray tip penetration and spray angle agreed well with established correlations.

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.

Atomization and Evaporation Characteristics of DME Fuel for the Application of HCCI Diesel Engine (HCCI 디젤엔진 연료적용을 위한 DME 연료 미립화 및 증발특성)

  • Chon, Mun-Soo;Hwang, Yong-Ha;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.140-146
    • /
    • 2006
  • The objective of this work is to analyze the atomization and evaporation characteristics of dimethyl ether(DME) fuel for the application of HCCI diesel engine. In order to investigate the spray behavior of DME fuel, the macroscopic and microscopic characteristics were investigated in terms of spray development, spray tip penetration, impingement time, SMD, and axial mean velocity under the various injection timing and ambient conditions. For the illumination of spray, the spray visualization system was composed of a Nd:YAG laser and an ICCD camera and laser-sheet method was used. The atomization characteristics of DME fuel are analyzed by using phase Doppler particle analyzer (PDPA) system It was reveal that the spray development of DME is slower and rapidly disappeared as elapsed time after start of injection at the same injection duration. The impingement timing of diesel fuel was fester than that of DME fuel. The comparison of spray atomization characteristics in both fuels shows that diesel fuel has a large SMD value that DME.

  • PDF

A Behavior Study of Diesel Spray on High Temperature (고온 분위기에서 디젤 분무의 거동에 관한 연구)

  • Ryu, H.S.;Chong, I.G.;Song, K.K.;YANO, T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.410-415
    • /
    • 2000
  • A diesel engine is one of the major prime movers to its high thermal efficiency. But due to the recent attention far the environmental pollution, the emissions of diesel engine became to a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. The factor which controls the diesel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of pressure and temperature. In this paper, experiments were conducted far the variation of the environmental temperature(273k, 373k, 573k), free spray and impinging spray. And the notions of penetration, spray angle, axial distance for free spray, and axial distance, spray thickness from impinging wall fur impinging spray.

  • PDF

Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector (커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector (고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF