• Title/Summary/Keyword: Diesel removal

Search Result 162, Processing Time 0.02 seconds

Esterification and Trans-esterification Reaction of Fish Oil for Bio-diesel Production (바이오디젤 생산을 위한 어유의 에스테르화 및 전이에스테르화 반응)

  • Lee, Young-Jae;Kim, Deog-Keun;Lee, Jin-Suk;Park, Soon-Chul;Lee, Jin-Won
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.313-319
    • /
    • 2013
  • To produce biodiesel efficiently from fish oil containing 4% free fatty acid, esterification and trans-esterification were carried out with Vietnam catfish oil, which was kindly provided from GS-bio company. Heterogeneous solid acid catalysts such as Amberlyst-15 and Amberlyst BD-20 and sulfuric acid as homogeneous acid catalyst were used for the esterification of free fatty acids in the fish oil. Sulfuric acid showed the highest removal efficiency of free fatty acid and the shortest reaction time among three acid catalysts. The base catalysts for trans-esterification such as KOH, $NaOCH_3$ and NaOH were compared with each other and KOH was determined to be the best transesterification catalyst. Some solid material, which assumed to be saponified product from glycerol and biodiesel, were observed to form in the fish oil biodiesel when using $NaOCH_3$ and NaOH as the transesterification catalyst. The initial acid value of fish oil was proven to have a negative effect on biodiesel conversion. Of the three catalysts, KOH catalyst transesterification was shown to have high content of FAME and the optimal ratio of methanol/oil ratio was identified to be 9:1.

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.