• Title/Summary/Keyword: Diesel nozzle

Search Result 203, Processing Time 0.022 seconds

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

An Investigation on the Spray Characteristics of DME with Variation of Nozzle Holes Diameter using the Common Rail Fuel Injection System (인젝터 노즐 홀 직경의 변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구 II)

  • Lee, Sejun;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • DME spray characteristics were investigated about varied ambient pressure and fuel injection pressure using the DME common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system with DME cooling system was used since DME has properties of compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray analysis parameters were spray shape, penetration length, and spray angle at six nozzle holes. Three types of injector were used, the nozzle holes diameter were 0.166 mm (Injector 1), 0.250 mm (Injector 2), and 0.250 mm with enlargement of orifice hole from 0.6 mm to 1.0 mm (Injector 3). The fuel injection pressure was varied by 5MPa from 35 to 70MPa when the ambient pressure was varied 0, 2.5, and 5MPa. When using Injector 3 in comparison to the others, the DME injection quantity was increased 1.69 ~ 2.02 times. Through this, it had the similar low heat value with diesel which was injected Injector 1. Among three types of injector, Injector 3 had the fastest development velocity of penetration length. In case of spray angle, Injector 2 had the largest spray angle. Through these results, only the way enlargement the nozzle holes diameter is not the solution of DME low heat value problem.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

Reduction of Exhaust Emissions Using Various Injector Configurations in Low Temperature Diesel Combustion (분사기 형상 변경을 통한 저온 디젤 연소의 배기 배출물 저감)

  • Jung, Yong-Jin;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.16-23
    • /
    • 2011
  • Low temperature combustion is one of the advanced combustion technology in an internal combustion engine to reduce soot and nitrogen oxides simultaneously. In present experiment three kinds of injector were used to investigate the influence of injection angle and number of nozzle holes on the low temperature combustion in a heavy duty diesel engine. Low temperature diesel combustion is realized from the exhaust gas recirculation rate of 60%. Indicated mean effective pressure of low temperature combustion corresponds to the 70% level of conventional diesel engine combustion. Reduction of hydrocarbon and carbon monoxide, which are produced in low temperature combustion because of the low combustion temperature and a deficit of oxygen, was achieved by using various injector configuration. The result of experiment with $100^{\circ}$ injection angle and 8 holes showed that reductions in hydrocarbon and carbon monoxide could be achieved 58% and 27% respectively maintaining the 7% increased indicated mean effective pressure in low temperature diesel combustion compared with conventional injector.

Experimental Investigation of Impinged Spray Characteristics of Oxygenated fuels Using BOS Method (BOS법을 이용한 함산소 연료들의 충돌분무특성에 관한 실험적 연구)

  • Bang, Seung Hwan
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.111-118
    • /
    • 2020
  • This paper describes the effect of DME, biodiesel blended fuels on the macroscopic spray characteristics in a high pressure diesel injection system using Background Oriented Schlieren (BOS) method. The BOS method for visualization of impingement evaporation sprays to analyze macroscopic spray properties and evolutionary processes. In this work, the blending ratio of DME in the blended fuel are 0, 50, 100% by weight ratio. In order to investigate the macroscopic impinged spray characteristics under the various injection parameters and blending ratio. In this work, a mini-sac type single-hole nozzle injector with nozzle hole was length 0.7 mm and diameter of 0.3 mm was used. According to the result, the spray area of the collision wall increased as the DME mixing ratio increased, and the evolutionary pattern showed a stepwise increase due to the collision effect of the wall. Also, results of impinged spray area were increased according to increasing injection pressure.

The Numerical Study on Prediction of Diesel Fuel Spray Evolution in a Different Types of Nozzle Geometry (노즐 형상에 따른 디젤 연료 분무의 발달 예측에 관한 수치 해석적 연구)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.169-174
    • /
    • 2017
  • The objective of this study was to verify the experimental and numerical results of spray evolution injected from different types of the nozzle-hole geometries. Spray visualization was taken by high speed camera under the different conditions. For the simulations of spray tip penetration, turbulence, evaporation and break-up model were applied K-zeta-f, Dukowicz and Wave model, respectively. Also, the prediction accuracy of spray tip penetration was increased by varying the spray cone angle. At the same time, the results of this work were compared in terms of spray tip penetration, and SMD characteristics. The numerical results of spray evolution process and spray tip penetration showed good agreement with experimental one.

Characteristics of a High Pressure Accumulator Type Fuel Injection System (축압식 고압 연료분사펌프 시스템 특성 해석)

  • Park, Seok Beom;Koo, Ja Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

The Behavior Characteristics of Diesel Impinging Spray on the Room Temperature Impinging Disk (상온 충돌판에서의 디젤 충돌 분무의 거동 특성)

  • Cha, K.J.;Se, G.I.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.24-31
    • /
    • 1996
  • This study addresses the behavior characteristics of diesel spray injected on the impinging disk with the room temperature. The models of impinging spray are the stick, the reflect and the wall jet model In the initiative of the fuel injection the impinging spray was the reflect model. because the momentum of droplets was very large. This model developed to the wall jet model according to the time approaches. On the low temperature disk the fuel film was made by the attachment of the droplets with low Weber number. The thickness of impinging spray was increased when the disk approached to the nozzle tip. Mathematical analysis for calculation with the behavior of impinging spray have to consider the reflecting effect and the influence of the fuel film.

  • PDF

An Experimental Study on the Reduction of Emissions in a Turbocheged D.I. Diesel Engine (터보과급기를 장착한 직접분사식 디젤엔진의 배출 가스저감에 관한 실험적 연구)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.726-731
    • /
    • 2000
  • This study was experimentally analyzed to improve the performance and to reduce exhaust emissions in a turbochaged D.I. diesel engine of the displacement 9.4L. In generally, the system of intake port, fuel injection and turbocharger are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The optimum results which is tested as available factors fur better performance and emission are as follows; the swirl ratio is 2.43, compression ratio is 16, combustion bowl is $5^{\circ}$ re-entrant type, nozzle hole diameter is ${\phi}0.28*6$, injection timing is BTDC $13^{\circ}CA$ and turbocharger is GT40 model which are selected compressor A/R 0.58 and turbine A/R 1.19.

  • PDF

Analysis of the Driving Performance in Piezo Injector for Clean Diesel Engine (친환경 디젤엔진용 차세대 피에조 인젝터의 구동성능 해석)

  • Lee, Jin-Wook;Kang, Kern-Yong;Min, Kyoung-Doug
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.33-34
    • /
    • 2006
  • In this study, a prototype piezo-driven Injector. as a new method driven by piezoelectric energy, has been designed and fabricated based on the concept of inverse piezo-electric effect to overcome the major drawbacks of conventional solenoid-driven injector with a fixed and slow control of injection rate. The effects of an electric control between the solenoid valve and piezo-ceramic stack for injector needle's driving on the dynamic characteristics were usually investigated. We found that this piezo-electric actuator has the main advantage to drastically reducing the time of injector nozzle opening, as well to exert higher force output levels.

  • PDF