• 제목/요약/키워드: Diesel fuel spray

검색결과 378건 처리시간 0.024초

분사율 변화에 따른 Dimethyl Ether (DME)와 디젤의 분무도달거리 (Spray Penetrations of Dimethyl Ether (DME) and Diesel for the Variation of Injection Rate)

  • 최욱;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.16-22
    • /
    • 2004
  • Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for a compression ignition engine. The major advantage of DME-fuelled engine is a great potential for soot-free combustion without sacrificing an inherent high thermal efficiency of diesel engine, despite a necessity for modification of the conventional fuel injection system. An experimental study on DME and conventional diesel sprays was conducted by employing a common-rail type fuel injection system with a 5-holes sac type nozzle, including a constant volume vessel pressurized with nitrogen gas. The injection rates of DME and diesel fuel were recorded with the Bosch type injection rate meter. The injection delay of DME was shorter than that of diesel fuel. The measured injection rates of DME and diesel fuel were correlated with spray penetrations. The prediction method of spray penetration was established using the injection rates, which was verified with the Dent's penetration model and found to agree well for DME case.

액상부탄연료의 분무특성에 관한 수치해석 (A Numerical Analysis for the Spray Characteristics of Liquified n-butane fuel)

  • 김성대;이성욱;동윤희;김산해;이영철;조용석
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.103-108
    • /
    • 2009
  • This research investigated spray characteristics using LPG fuel under compression ignition to contribute to develop a high efficiency LPG fuel is an environmentally-friendly fuel since it emits lower $CO_2$ compare to other conventional fuels. In order to observe spray process, a high speed digital camera and high pressure common-rail injector were applied. Using the spray behaviors of LPG and diesel fuel from the experiment, this research analyzed the mixing process of air-fuel mixture numerically with FLUENT 6.3 when LPG and diesel fuel injected directly into the cylinder while compression stroke occurs. Spray characteristics of LPG fuel was investigated by using numerical method, in which KH-RT model was adapted for phase change. As a result of numerical analysis, this work found out that LPG spray has a wider mixing formation and uniform diffusion of air-fuel mixture compare to diesel.

  • PDF

직접분사식 디젤기관의 연소실 형상과 화염의 발달 (2)-유화액연료용 연소실의 형상- (The Effect of Air and Spray Turbulence on the Progress in a D.I. Diesel Engine(II)-Combustion Chamber Design for the Use of Emulsified Diesel Oil with Water Particles-)

  • 방중철;태전간랑
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3054-3062
    • /
    • 1995
  • Recently, the improvement of fuel economy and the reduction of exhaust smoke and NOx have been successfully achieved by supplying diesel engines with emulsified diesel oil with water particles. In the present paper, the difference between the combustion of injected emulsified fuel and that of diesel oil spray is clarified by means of taking high-speed and color photographs of the flames in the engine cylinder. As the results, the two kinds of fuels show different combustion behavior each other in the growth of initial flame and in the termination of combustion process in the cylinder. Then, suitable combustion chamber design for the use of emulsified fuel is discussed on the basis of experimental data for various distribution of spray in different kinds of piston cavities. Some methods of clearing troubles caused by emulsified fuel injection are also discussed on the basis of performance tests with a remodeling test engine.

물혼합연료의 분사특성과 디젤연소에 미치는 영향 (Injection characteristics of emulsified fuel and effect on diesel combustion)

  • 박권하
    • 한국분무공학회지
    • /
    • 제2권1호
    • /
    • pp.29-35
    • /
    • 1997
  • Many technologies have been developed to improve diesel emissions or performance, however NOx/PM trade-off occurs because normal methods that reduce NOx emissions tend to increase PM emissions. On the other hand many measures used to control PM emissions tend to increase NOx emissions. Thus, simultaneously controlling both NOx and PM emissions has become a significant challenge for diesel engine manufacturers. As one of the measures, the technology using emulsified fuel has recently become important under the stringent emission regulations of diesel engines. This paper investigates injection characteristics of emulsified fuel and its effect on a combustion performance in a diesel engine. In order to supply emulsified fuel into injection system a mixing unit produced by Harrier is used, then the fuel mixed with water is supplied into injector directly. The spray injected is investigated with a shadowgraph photo system and injection analyzing apparatus, then applied into a diesel engine. Those results showed that the emulsified fuel has an effect on reducing both NOx and PM.

  • PDF

세탄가 향상 혼합 연료에 따른 디젤 연료의 분무 및 연소특성에 관한 연구 (The Spray and Combustion Characteristics by the Ratio of Cetane Number Enhancing Additives in Diesel)

  • 김지훈;이성욱;이한승;최정황;이영철;조용석
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.84-89
    • /
    • 2009
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying different composition rates of octane number in diesel fuel to a common-rail system. For the visualization, the experiment was carried out under different injection pressures and different cetane number. The test was done by three different types of diesel fuels, the different composition rates of cetane number in diesel fuel and HBD. In summary, this research aims to investigate the combustion characteristics in the application of fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide with fundamentals of the development of diesel engines in future.

  • PDF

디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구 (A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet)

  • 염정국;김민철
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

VCO노즐에서 고압으로 분사되는 디젤분무의 특성 (Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection)

  • 강진석;배충식
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF

축대칭 이류체 분무화염의 구조에 관한 연구 (A Study on the Structure of Axial-Symmetric Two-Phase Spray and Flame)

  • 정보윤;고대권;안수길
    • 수산해양기술연구
    • /
    • 제24권1호
    • /
    • pp.36-43
    • /
    • 1988
  • Boilers and diesel engines have many problems because their exhaust particles, i.e., soot have lots of bad influence on environment. And it's spray and flame have fundamentally axial symmetric shape. To investigate the relationship between fuel concentration distribution of spray and soot concentration distribution as well as temperature distribution of flame, we made a axial symmetric two phase spray-flame and analyzed the structure of is. The measuring method is the principle of the light extinction method for the spray-flame and onion peeling model is applied to analyze the radial distribution of fuel and soot concentration. The temperature of flame is measured by ø 0.4mm Pt-Pt.RH 3% thermocouple. The oils for the experiments are diesel oil and 10% water emulsified diesel oil. It was found that the soot concentration becomes higher as it comes near to the center of flame, and the fuel concentration does, too. And the soot concentration level of diesel oil is generally higher than that of the 10% water emulsified fuel. The maximum flame temperature of diesel oil is 1,17$0^{\circ}C$, however, 10% water emulsified diesel oil is 1,27$0^{\circ}C$.

  • PDF

전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구 (A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System)

  • 장세호;안수길
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

Dimethyl Ether와 디젤의 거시적 분무 특성 비교 (Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel)

  • 유준;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.