• 제목/요약/키워드: Diesel fuel spray

검색결과 378건 처리시간 0.022초

디젤/1-부탄올 혼합연료 단일액적의 자발화 현상 (Autoignition Phenomena of a Single Diesel/1-Butanol Mixture Droplet)

  • 김혜민
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.90-95
    • /
    • 2018
  • The goal of this study is to experimentally observe the autoignition phenomena of a diesel/1-butanol mixture droplet in ambient pressure and $700^{\circ}C$ condition. A volume ratio of 1-butanol in the fuel was set to 25, 50 and 75%. A single droplet was installed at the tip of fine thermocouple, and the electric furnace dropped down to make elevated temperature condition. Droplet behavior during the experiment could be divided into 3 stages including droplet heating, puffing and autoignition/combustion. Puffing process intensively observed for the case of 1-butanol volume ratio of 25 and 50%, but did not occur at 75%. Increase of 1-butanol volume ratio hindered rise of the droplet temperature and delayed ignition. In addition, puffing process also affected on autoignition, so the ignition delay of 1-butanol volume ratio of 50% was became longer than that of 75% case.

벽면충돌분무에 관한 수치해석 (A Study of Numerical Analysis on Wall Impinging Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.21-28
    • /
    • 2013
  • Phenomenon of droplet impingement with high temperature wall needs to be investigated because atomization process of droplet and cooling process of the wall by the impingement are very important in industry, thus studies concerned with temperature of piston wall have been conducted in spray characteristics analysis of diesel engine. Hence, in this study, we defined $DT_{sat}(=T_w-T_{sat})$ superheat degree of the wall by difference between $T_w$ considering surface temperature of piston in the actual engine and $T_{sat}$ saturation temperature of the fuel and then investigated spray behavior of wall impinging with variance of the boiling process. In this study, in order to analyze wall impingement of droplet in accordance with difference of boiling condition, calculational conditions were set as $DT_{sat}=40K$(nucleate boiling), $DT_{sat}=140K$(transition boiling), and $DT_{sat}=240K$(film boiling). As a result, it can be found that fuel vapor increases and droplet mass decreases in the order of the nucleate boiling, transition boiling, and film boiling.

상세 화학 반응 모델 및 RIF 모델을 이용한 디젤 분무의 자발화 과정 해석 (Numerical Simulation of Auto-ignition Process of Diesel Sprays Using Detailed Chemistry and Representative Flamelet Model)

  • 유용욱;김성구;김용모;손정락
    • 한국분무공학회지
    • /
    • 제5권2호
    • /
    • pp.61-67
    • /
    • 2000
  • The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multi-RIF is used. The effect of the number of RIF on ignition delay is discussed in detail. Numerical results indicate that the present RIF approach successfully predicts the ignition delay time as well as the essential features of a spray auto-ignition process.

  • PDF

노즐분공내 유체충돌이 있는 디젤노즐의 유동 및 분무특성 연구 (Characterization of the internal flow and fuel spray from an impinging flow nozzle)

  • 하성업;김흥열;구자예;류구영
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1635-1646
    • /
    • 1997
  • The nozzle length to diameter ratio of real diesel nozzles is about 2-8 which is not long enough for a fully developed and stabilized flow. The characteristics of the flow such as turbulence at the nozzle exit which affect the development of the spray can be enhanced by impinging the flow inside nozzle. The flow details inside the impinging nozzles have been investigated both experimentally and numerically. The mean velocities, the fluctuating velocities, and discharge coefficients in the impinging inlet nozzles, round inlet nozzle, and sharp inlet nozzle were obtained at various Reynolds number. The developing feature of the external spray were photographed by still camera and the droplet sizes and velocities were also measured by laser Doppler technique. The spray angle was greater and the droplet sizes near the spray axis were smaller with the impinging flow inside nozzle.

휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성 (Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle)

  • 박경균;권상일;이우석;홍지형
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF

고온벽면에서의 액적연료의 증발 및 착화에 관한 연구 (A Study on the Evaporation and Ignition of Single Fuel Droplet on the Hot Surface)

  • 송규근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.132-137
    • /
    • 2002
  • Recently, impinging spray is used for atomization of diesel engine, but it bring on adhesion of fuel. Therefore, we studied about droplet behavior on high temperature plate changing the size of droplet, surface temperatures, and surface roughness of plate. In this study, We studied to confirm experimentally about mechanism of evaporation and ignition process of single fuel droplet. We observed evaporation time, evaporation appearance and ignition delay time by the photopraphs of 8mm video camera. Experimental results are summarized as follows: 1. The boiling point of fuel affect a evaporation and ignition process. 2. The surface roughness affect a evaporation time. 3. The ignition delay time relate to evaporation characteristic.

다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구 (A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels)

  • 윤준규;임종한
    • 에너지공학
    • /
    • 제16권3호
    • /
    • pp.120-127
    • /
    • 2007
  • 본 연구의 목적은 디젤연소장의 분위기조건에 따라 다성분 혼합연료의 질량분률이 분무착화 및 연소특성에 미치는 영향을 실험적으로 고찰하는데 있다. 착화 및 연소특성은 화학발광계측법 및 직접촬영법을 이용하여 분석되었다. 실험은 광계측기를 사용하여 RCEM에서 이루어졌으며, 이소옥탄, 노말 도데칸, 노말 헥사데칸으로 혼합한 다성분연료는 커먼레일 인젝터의 전자제어에 의해 RCEM의 연소실 내로 분사된다. 실험조건은 분사압력 42, 72, 112 MPa과 분위기온도 700, 800, 900 K로 하였다. 그 결과로서 착화지연은 고세탄가성분에 의존하고, 분위기온도가 낮을 경우 저비점성분 혼합비율의 증가에 따라 휘도영역이 현저하게 낮아지며, 열발생률이 증가하면서 확산연소기간을 단축시킨다.

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

고온·고압 조건에서 바이오디젤의 가연한계 예측 (A Prediction on the Flammability Limits of Biodiesel Fuel in the High Temperature and Pressure Conditions)

  • 임영찬;정준우;서현규
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.157-162
    • /
    • 2019
  • This numerical study was analyzed to predict the flammability limits of biodiesel and diesel fuels in the high temperature and pressure conditions. To achieve this, the biodiesel fuel was simulated with the chemical species of n-heptane (n-C7H16), methyl decanoate (C11H22O2), and methyl-9-decenoate (C11H20O2), and the diesel fuel was substituted the chemical species of n-heptane. The closed 0-D homogeneous reactor model which was employed the 1100 K of ambient temperature and 35 atm of ambient pressure was used for the simulation of constant volume combustion, and the equivalence ratio was changed from 0.3 to 2.5 conditions. In addition, a comparative analysis study was conducted with the results of HCCI engine simulation and flammability limits according to the changes of equivalence ratio. The results of combustion temperature, pressure, and ignition delay were increased when the equivalence ratio elevated from 0.3 to 1.3 conditions because the increase in fuel oxidation rate affects the chemical reaction of the overall combustion process. Furthermore, the CO and NOX production under the rich combustion conditions are considered to have a trade off relationship since the OH radicals and O2 chemical species are greatly affected the CO and NOX production and oxidation processes.

Correlations for Predicting Viscosity of Vegetable Oils and Its Derivatives for Compression Ignition Engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.122-130
    • /
    • 2009
  • Vegetable oil and its derivatives as an alternative diesel fuel have become more attractive recently because of its environmental benefits and the fact that they are made from renewable resources. Viscosity is the most significant property to affect the utilization of vegetable oil and its derivatives in the compression ignition engines. This paper presents the existing correlations for predicting the viscosity of vegetable oil and its derivatives for compression ignition engines. According to the parameter considered in the correlations, the empirical correlations can be divided into six groups: correlations as a function of temperature, of proportion, of composition, of temperature and composition, of temperature and proportion, and of fuel properties. Out of physical properties of fuel, there exist in the literature several parameters for giving the influence on kinematic viscosity such as density, specific gravity, the ratio of iodine value over the saponification value, higher heating value, flash point and pressure. The study for the verification of applicability of existing correlations to non-edible vegetable oil and its derivatives is required.

  • PDF