• Title/Summary/Keyword: Diesel Vehicles

Search Result 370, Processing Time 0.032 seconds

Atmospheric Concentrations of Semivolatile Bifunctional Carbonyl Compounds and the Contribution from Motor Vehicles

  • Ortiz, Ricardo;Shimada, Satoru;Sekiguchi, Kazuhiko;Wang, Qinyue;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.152-160
    • /
    • 2013
  • Seven potentially harmful bifunctional carbonyls were measured in particulate and gaseous phases at a roadside site and a suburban site in an area about 30 km north-northwest from Tokyo metropolitan area in the Kanto region in Japan. For the first time, these compounds were measured in both phases with a time resolution of 2 h. We found that wind direction is an important parameter that affects the collection of these compounds near the source, and it can cover the effects of other important variables. Our results confirmed that motor vehicles and especially diesel fuelled vehicles are important sources of these compounds. Photochemical generation is also an important source of these compounds in the gaseous phase. Transportation from the urban area is also important, particularly in the aerosol phase.

RDE Characteristics of Euro 6 Light Duty Diesel Vehicles Regarding to Driving Conditions (주행조건에 따른 유로6 경유자동차의 RDE 특성)

  • Cha, Junepyo;Yu, Young Soo;Lee, Dongin;Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.218-224
    • /
    • 2017
  • In order to improve the quality of air in urban areas, the emission regulations are being strengthened by the government. The on-road test of light-duty vehicles was started with PEMS because certification test mode does not sufficiently reflect on-road conditions. Therefore, The PEMS-based test was implemented from Sep. 2017 in Europe and Korea. However, this is lack of data on various on-road patterns in Korea. The purpose of the present study has analyzed the effect of speed per acceleration and acceleration on NOx emission on-road driving. The test route consisted of urban, rural, and motorway in Seoul. This study has been conducted by Euro-6 vehicles using on SCR system with PEMS. The on-road emission characteristics were evaluated by moving averaging windows (MAW) method. In results, RDE-NOx by severe driving pattern has been 1.4 times higher than soft driving pattern NIER Route 1.

Study on RDE (Real Driving Emission) Characteristic of Gasoline Vehicle Depending on the Ambient Temperature (대기 온도에 따른 가솔린 차량의 실도로 배출가스 특성 연구)

  • Kim, Hyun-Jin;Kim, Sung-Woo;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • Despite the increasingly stringent automotive emissions regulations, the impact of vehicle emissions on air pollution remains large. In addition, since the issue of emission of more exhaust gas than the exhaust gas measured in the test room when the vehicle passing the exhaust gas regulation standard is run on the actual road, many countries studied and introduced gas regulations about Real Driving Emission using Portable Emission Measurement System. At present, Korea regulations restrict the number of NOx and PN in diesel vehicles. In the case of gasoline vehicles, there is no regulation on emission gas, but there is a problem of continuing automobile exhaust gas problems and a large amount of gasoline GDI vehicle's PN emission. So research and interest are increasing due to this problem. In this study, characteristics of exhaust gas depending on changes of ambient temperature were analyzed among various factors affecting exhaust gas measurement of gasoline vehicles. As a result, at the low temperature test, the lower the ambient temperature, the more the exhaust gas was emitted. At ordinary temperature test, no specific tendency was observed due to changes of ambient temperature.

Research on the Lubrication Characteristics of Driving Modules (구동 모듈 감속기 윤활 특성에 관한 연구)

  • Kim, EunKyum;Kim, HyunChan;Park, JunYoung
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.70-72
    • /
    • 2022
  • In this study, we report on a power system developed as a decelerator for a driving module in an electric vehicle. The system is to be mounted in a limited space. The research focus was on development of miniaturization, light weight, and high power density. In particular, we aimed to minimize the layout of existing external components as integrated or built-in, and to maximize the power density by applying optimal cooling technology to increased requirements for developing modular power systems applicable to various OEM models. South Korean automakers ranked fourth in global electric-vehicle sales in 2020, but domestic sales are relatively slow. Despite government's expansion in subsidies for eco-friendly cars, consumers are delaying purchases after 2021 considering the cost-effectiveness of electric vehicles. In major European markets, the demand for electric vehicles exceeded the demand for diesel cars, and sales of hybrid cars, which used to represent eco-friendly cars, are slowing down as Toyota, started selling electric vehicles. In this study, the internal lubrication characteristics of a decelerator installed in an electric vehicle were analyzed in terms of the deceleration time while driving. By selecting the proper oil and oil viscosity, it was confirmed that there is no problem in lubricating the bearings and gears of the decelerator.

Study on Estimation of PM Mass in DPF from Pressure Drop in 3L Diesel Engine (3L급 디젤엔진의 배압이용 DPF 매연포집량 예측에 대한 연구)

  • Kim, Hong-Suk;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.499-504
    • /
    • 2010
  • It is important to determine the exact soot mass in a DPF system in order to control the timing of PM regeneration. The soot mass accumulated in a filter can be estimated from the pressure drop in the filter and the exhaust gas flow rates. In this study, the soot index is defined as the pressure drop in the DPF divided by the pressure drop in a DOC. An effective signal processing method for determining the soot index is proposed; the results yielded by this method indicate good correlation between the soot index and the amount of soot loaded into the filter for both steady-state and transient-state operating conditions in a 3L diesel engine for passenger vehicles.

A Study on Combustion Process of Biodiesel Fuel with Pilot Injection in a Common-rail Diesel Engine (파일럿분사에 의한 바이오디젤유의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.146-153
    • /
    • 2011
  • American NREL (National Renewable Energy Laboratory) reported that BDF20 could reduce PM, CO, SOx, and cancerogenic matters by 13.6%, 9.3%, 17.6%, and 13% respectively, compared to diesel fuel. BDF20 has been being tested on garbage trucks and official vehicles at Seoul City, which is positive on air environment, but negative on combustion by higher viscosity in winter season. This study investigated the combustion characteristics by applying pilot injection for improving the deterioration of combustibility caused by the higher viscosity of the BDF20 with the combustion flames taken by a high-speed camera and the cylinder pressure diagram. A 4-cycle single-cylinder diesel engine was remodeled to a visible 2-cycle engine taking the flame photographs, which has a common-rail injection system. The test was done laboratory temperature at $5{\sim}6^{\circ}C$. The results obtained are summarized as follows, (1) In the case of without pilot injection, the flame propagation speed was slowed and the maximum combustion pressure became lower. The phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of with pilot injection, early stage of combustion such as rapid ignition timing and flame propagation was activated since intermediate products formed by pilot injection act as a catalyst for combustion of main fuel.

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF

Study of the effects of injector cleaning on the exhaust gases in a common rail diesel engine (커먼레일 디젤엔진의 인젝터 클리닝이 배기가스에 미치는 영향에 관한 연구)

  • Cho, Hong-Hyun;Kim, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5980-5987
    • /
    • 2014
  • As a response to exhaust gas regulations, the electronic control system was applied to the diesel engine. The injected fuel mass and injection timing are accurately controlled using it, and the fuel efficiency and the engine output are significantly increased. In addition, the noise and the vibration of vehicles are decreased. To maintain the optimal performance of an electronic control diesel engine, it is important to control the fuel injection pressure accurately using the fuel pressure regulator. When the fuel pressure regulator is not worked normally, the failure phenomena (starting failure, staring delay, accelerated failure, engine mismatch et al.) occurred because the fuel pressure is not stabilized and controlled accurately. In this study, the effects on a fuel pressure, return fuel mass flow, and engine rotating speed according to the control rate of fuel pressure regulator were investigated to analyze the performance variation under the failure conditions of a fuel pressure regulator. As a result, when the control rate of a fuel pressure regulator decreased by 4%~6% compared to that of the standard condition, the variation of engine rotating speed and return fuel flow were increased greatly, and the abnormal condition occurred. In addition, it is possible to diagnose the failure of a fuel pressure regulator by monitoring these conditions.

Development of a PTC Heater for Supplementary Heating in a Diesel Vehicle (디젤 차량의 보조 난방을 위한 PTC 히터 개발)

  • Shin, Yoon Hyuk;Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.666-671
    • /
    • 2014
  • Using positive temperature coefficient (PTC) heater as supplementary heating for diesel engine vehicles with low heat source is a good method to enhance the heating performance during cold start. In this study, the PTC elements were made by using screen printing process for forming ohmic contact layer, and prototype of PTC heater was designed and made for a diesel engine vehicle. In process of designing the PTC heater, the thermal flow analysis of PTC element modules was conducted for verifying the effect of the shapes of contact surface between each of the components (cooling fin, insulator, ceramic element). We also investigated the performance characteristic (heating capacity, energy efficiency, pressure drop) of the PTC heater through the experiments. Therefore, the experimental results indicated that prototype of PTC heater had satisfactory performance. This study will be basis for improving the manufacturing process and increasing the performance of the PTC element and heater.

A feasibility study on Introducing Reference Fuel(Diesel) for Testing Vehicles in South Korea (국내 차량 인증시험용 표준연료(경유) 도입 필요성 검토 연구)

  • Hwang, Inha;Kang, Hyungkyu;Seong, Sangrae;Song, Hoyoung;Ha, Jonghan;Na, Byungki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.974-985
    • /
    • 2017
  • Although the number of registered cars in South Korea is about 22million but, there is no national standard for automobile reference fuel in South Korea. Reference fuel is the fuel used for certificating vehicle performance, emissions and fuel economy. Now, domestic market fuels are used as reference fuel. However, the quality of domestic market fuel is constantly changing by seasonal and fuel manufacturers. It may effect vehicle performance, emissions and fuel efficiency test result. On this study, market diesel fuel quality was monitored and reference fuel standard(draft) was set by reflecting market fuel monitoring result. Reference fuel standard(draft) was applied to CRDI engine.