• Title/Summary/Keyword: Diesel NOx

Search Result 672, Processing Time 0.022 seconds

Characteristics of NOx and PN According to After-treatment for Light-duty Diesel Vehicles in WLTC Test Mode (WLTC 시험 모드에서 소형 경유자동차의 후처리 시스템에 따른 질소산화물 및 입자개수 배출 특성)

  • Lee, Dong In;Ko, Sangchul;Yu, Young Soo;Park, Junhong;Cha, Junepyo;Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.234-243
    • /
    • 2018
  • Since September 2017, a small diesel vehicle certification test mode has been enhanced from NEDC to WLTC. The main reason for the change of the certification test mode is that the certification test mode of the emission control standard of the diesel vehicle does not sufficiently reflect various driving patterns of the actual roads. Several automakers have developed after-treatment systems such as LNT, SCR, and DPF to meet enhanced emissions regulations. In this study, four small diesel cars were selected for sale in Korea, and the exhaust gas measurement test was performed in the WLTC mode, which reflects the driving characteristics of the actual roads. As a result of test, LNT vehicle exceeded Euro 6 NOx regulation and SCR vehicle satisfied Euro 6 NOx regulation. In addition, both LNT and SCR systems showed high NOX emission characteristics due to speed, RPA and Vxa. For the PN, all test vehicles were fitted with a DPF and met the Euro 6 PN regulations, with similar PN emissions results in LNT and SCR system.

A Study on Emission Reductions of Diesel Engine Using Plasmatron Fuel Converter (플라즈마트론을 이용한 디젤 엔진의 매연저감에 관한 연구)

  • Ki, Ho-Beom;Kim, Bong-Soo;Kwak, Yong-Hwan;Kim, Woo-Hyung;Lim, Won-Kyung;Chae, Jae-Ou
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.104-109
    • /
    • 2006
  • Improvements in internal combustion engine and aftertreatment technologies are needed to meet future environmental quality goals. Plasmatron fuel converters provide a rapid response, compact means to transform a wide range of hydrocarbon fuels (including gasoline, natural gas and diesel fuel) into hydrogen-rich gas. Hydrogen-rich gas can be used as an additive to provide NOx reductions of more than 80% in diesel engine vehicles by enabling very lean operation or heavy exhaust engine recirculation. For diesel engines, use of compact plasmatron reformers to produce hydrogen-rich gas for the regeneration of NOx absorber/absorbers and particulate traps for diesel engine exhaust after-treatment could provide significant advantages. Recent tests of conversion of diesel fuel to hydrogen-rich gas using a low current plasmatron fuel converter with non-equilibrium plasma features are described.

  • PDF

A Exhaust Gas Study by EGR in Heavy-Duty Diesel Engine (대형디젤기관에서 EGR에 의한 배출가스 연구)

  • 한영출;류정호;오용석;이현우;강호인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.285-291
    • /
    • 2000
  • EGR(Exhaust Gas Recirculation) is known as the technique reducing the NOx emissions from diesel engine. Low pressure roote and high pressure roote are applied for heavy-duty diesel engine are. In this study, as research for the heavy duty diesel engine equipped with EGR, reduction characteristic of CO, THC, NOx, and PM in HD diesel engines are investigated by applying EGR device. Also, through the experiments using 11 liters, turbocharged diesel engine with EGR valve and intercooler, exhaust gas reduction characteristics were measured as changing in EGR rate according to D-13 mode.

  • PDF

The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine (직접 분사식 디젤엔진에서 EGR이 배기배출물에 미치는 영향에 관한 연구)

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments-were performed at various engine loads while the EGR rates were set from 0% to 20%. The emissions trade-off and combustion of diesel engine are investigated. Hot and cooled EGR are achieved without cooling and with cooling respectively. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar at load 20%.

  • PDF

Experimental Investigation on DeNOx Performance according to the Urea-SCR System Control at Various Operating Conditions for Diesel Engines (디젤엔진의 운전조건 변화 및 Urea-SCR 시스템 제어에 따른 DeNOx 성능에 대한 실험적 연구)

  • Han, Jung-Won;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • Recently, as the current and future emission regulations go stringent, the research of NOx reduction has become a subject of increasing interest and attention in diesel engine. Selective Catalytic Reduction (SCR) is one of the effective technology to reduce NOx emission from diesel engine. Especially, Urea-SCR that uses urea as a reductant is becoming increasingly popular as a cost effective way of reducing NOx emissions from heavy duty vehicles. In this research, we designed urea injector and DCU (Dosing Control Unit) specially developed for controlling the Urea-SCR process onboard vehicles. As passenger and commercial diesel engine experiment, we grasped characteristics of NOx emission and SCR catalyst temperature level in advance. As a result, highest NOx emission level was shown in condition of low engine speed and high load. On the other hand, SCR catalyst temperature was highest at high engine speed and load. On the basis of these result, we conducted the NOx reduction test at steady engine operating conditions using the urea injector and DCU. It was shown that 74% NOx conversion efficiency on the average and 97% NOx conversion efficiency was obtained at high SCR catalyst temperature.

Characteristic Analysis of a SCR System using a Metal Foam in Diesel Engines (디젤 엔진에서 금속 폼을 적용한 SCR 촉매의 특성 분석)

  • Kim, Yongrae;Choi, Kyonam
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.196-201
    • /
    • 2013
  • SCR(Selective Catalytic Reduction) is a major after-treatment solution to reduce NOx emission in recent diesel engines. In this study, a metal foam is applied as an alternative SCR substrate and tested in a commercial diesel engine to compared with a conventional ceramic SCR system. Basic engine test from ND-13 mode shows that a metal foam catalyst has lower NOx conversion efficiency than a ceramic catalyst especially over $350^{\circ}C$. A metal foam catalyst has characteristics of high exhaust gas pressure before a SCR catalyst and high heat transfer rate due to its material and structure. NOx conversion efficiency of a metal foam catalyst shows an increasing tendency along with the increase of exhaust gas temperature by $500^{\circ}C$. The effect of urea injection quantity variation is also remarkable only at high exhaust gas temperature.

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

An Combustion Diagnosis Using Optical Measurement in D. I Diesel Engine with Dual Fuel Stratified Injection System (이종연료 층상분사를 적용한 디젤엔진에서 광 계측을 이용한 연소해석)

  • An, H.C.;Kang, B.M.;Yeom, J.K.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.31-37
    • /
    • 2002
  • In previous study, diesel-methanol stratified injection system is manufactured and applied to a D.I. diesel engine in order to realize combustion improvement using methanol, which is oxygenated fuel with large latent heat. We know that NOx and soot is reduced by stratified injection of diesel fuel-methanol. Therefore, in the present study, combustion diagnosis using optical measurement is tried to make clear effect of methanol on simultaneous reduction of NOx and soot. Two-color method is used to measure flame temperature and KL value, which is approximately proportional to the soot consentration along the optical path. Laser induced scattering method was used to measure distribution of soot at two dimensional area. Also, it is compared exhaust characteristics of NOx and soot with results of optical measurement.

  • PDF

A Study on Application of Dimethoxy Methane and EGR Method for Simultaneous Reduction of Smoke and NOx Emission (매연과 NOx의 동기저감을 위한 Dimethoxy Methane과 EGR방법의 적용에 관한 연구)

  • Choi, Seung-Hun;Oh, Young-Taig;Hwang, Yun-Taig;Song, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.448-453
    • /
    • 2003
  • In this study, the effects of oxygen component in fuel and exhaust gas recirculation(EGR) method on the exhaust emissions has been investigated for a D.I. diesel engine. It was tested to estimate change of exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has five kinds of blending ratio. Dimethoxy methane(DMM) contains oxygen component 42.5% in itself. and it is a kind of effective oxygenated fuel for reduction of smoke emission. It was affirmed that smoke emission was decreased with increasing of DMM blending ratio. But, NOx emission was increased compared with commercial diesel fuel. It was needed a NOx reduction countermeasure that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with DMM blended fuel and cooled EGR method($10{\sim}15%$).

  • PDF

NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a, 6b and 6d Regulations on Off-cycles (Off-cycle에서 Euro 6a, 6b 및 6d 규제 만족 디젤 자동차의 NOx 배출 특성)

  • Kim, Jeonghwan;Kim, Sungwoo;Kim, Kiho
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.136-148
    • /
    • 2018
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission (RDE) regulation and the test method that will be applied after 2017. In this paper, for the regulation to make a soft landing in Korea, 6 diesel passenger cars which met Euro 6a~6d regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles (FTP, US06, SC03, HWFET and CADC) and several ambient conditions (-7 and $14^{\circ}C$) as well as certification modes (NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.