• Title/Summary/Keyword: Diesel NOx

Search Result 673, Processing Time 0.021 seconds

A Study on NOx and Smoke by Exhaust Gas Measuring Method of Light-Duty Engine (소형엔진의 배출가스측정방법에 따른 질소산화물 및 매연에 관한 연구)

  • 한영출;나완용;오용석;문병철;박봉규;박귀열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.7-11
    • /
    • 2001
  • Recently, increasing usage of diesel vehicle, many countries try to reduce the pollutant materials by emission regulation standard. Particularly in our country, the supplement ration of diesel vehicle is high, and air pollution by vehicle exhaust gas is very serious. So, in study, we tested exhaust gas by various mode in-light duty diesel engine. Therefore, we can know about NOx and smoke seriousness.

  • PDF

Flame Characteristics of Diesel Spray in the Condition of Partial Premixed Compression Ignition (부분 예혼합 압축착화 조건에서 디젤분무의 화염특성)

  • Bang, Joong Cheol;Park, Chul Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2012
  • Diesel engines exhaust much more NOx(Nitrogen Oxides) and PM(Particulate Matter) than gasoline engines, and it is not easy to reduce both NOx and PM simultaneously because of the trade-off relation between two components. This study investigated flame characteristics of the partial premixed compression ignition known as new combustion method which can reduce NOx and PM simultaneously. The investigation was performed through the analysis of the flame images taken by a high speed camera from the visible engine which is the modified single cylinder diesel engine. The results obtained through this investigation are summarized as follows; (1) The area of the luminous yellow flame was reduced due to the decrease of flame temperature and even distribution of temperature. (2) The darkish yellow flame zone caused by the shortage of the remaining oxygen after the middle stage of combustion was considerably reduced. (3) Since the ignition delay was shortened, the violent combustion did not occur and the combustion duration became shortened.

An Experimental Study on the characteristic of Exhaust Emissions and the Engine Performacne with Intake Port Water Injection in Diesel Engine (흡기 포트 내 물 분사에 의한 디젤 기관의 배기 유해물 배출 및 기관 성능 변화에 관한 실험적연구)

  • 김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • This study was carried out to reduce NOx emissions from diesel engine and to investigate the variation of engine performance using the water injection. In this study the water was extracted from the exhaust gas and injected directly into the intake port with the inlet charge. The water condensing system operated as a closed system without any supplementary water supply. The experimental parameters such as the revolution the torque and the water injection rate are varied and the result from this experiment found the significant NOx reduction whereas the smoke emission increases as water/air ratio increases as the cases like the EGR. In spite of increasing the quantity of the water injection the engine output was slightly decreased and the specific fuel consumption was increased as was anticipated. Especially the system was founded to be effective on the reduction of the NOx emissions at the high load region relatively.

  • PDF

A Study on the Effect of Fuel Injection System on D. I. Diesel Engine (직접분사식 디젤기관의 성능에 미치는 연료 분사계의 영향에 관한 연구)

  • 윤천한;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozzle hole, diameters of an injection pipe, and injection timing in the fuel injection system. We have obtained the results that the fuel consumption ratio is reduced and NOx concentration is increased as the smaller diameter of injection nozz1e hole, the smaller diameter of injection pipe, and more advanced injection timing. They show that optimizing the factors of fuel injection system is significant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

An Experimental Study on the Characteristics of Performance and Exhaust Gas Emission with Charging Diesel Engine on Oxygen-enriched and Cooled-EGR (디젤기관에서 산소과급 및 Cooled-EGR에 의한 성능 및 배출가스 특성에 관한 실험적 연구)

  • 류규현;한영출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.83-88
    • /
    • 2003
  • Recently, The world is faced with the very serious problems related to the increasing use of the conventional petroleum fuels. The air pollutions in big cities have been occurred by the exhaust emissions from automobiles. Many researchers have been attracted various oxygen-enriched for the measure of these problems. In this study, Oxygen-enriched air supplied to a diesel engine has significant benefits in reducing the particulate matter emission but detects in increasing the NOx. This study concluded that the oxygen-enriched and cooled-EGR might be a good measure to reduce smoke, particulate emission and NOx in diesel engine.

Numerical studies for combustion processes and emissions in the DI diesel engines using EGR (EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석)

  • Kwon, Y.D.;Lee, J. C.;Kim, Y. M.;Kim, S. W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.

A Numerical Study on Effect of Variation of Injection Angle on the Emissions (디젤 엔진의 분사각 변화가 배기가스에 미치는 영향에 관한 수치해석적 연구)

  • Bae, Myung-Jik;Lee, Byoung-Hwa;Han, Dong-Sik;Jeon, Chung-Hwan;Chang, Young-June;Song, Ju-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3085-3089
    • /
    • 2008
  • In order to reduce NOx and Soot emissions simultaneously, characteristics of diesel spray and combustion were investigated by numerical simulation with StarCD in this paper. This work focuses on effect of Spin Injection. A simulation model of combustion, spray and emissions is developed for heavy duty marine diesel engine application. Simulation is performed with change of spray angle between first and second directions at fixed engine speed, injection timing, injection duration and etc. The results show that Spin Spray Injection method can reduce NOx emission. And the results show that the 1st injection considerably interfere with 2nd injection characteristics.

  • PDF

An Exhaust Gas Study of HD Diesel Engine with the Electronic control EGR (전자제어 EGR을 사용한 대형디젤기관의 배출가스연구)

  • Park Kyi-yeol;Oh Yong-suk;Moon Byung-chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Modem after-treatment technology has been developed variously in order to decrease exhausted emission in diesel engine. However, it seems very difficult to comply with updated stringent emission standards. Specially, it has been many years that exhaust gas from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the electronic control EGR and the target for this research is heavy-duty turbo-diesel engine with EGR technology(High pressure route and low pressure route system).

An Experimental Study on Performance and Exhaust Gas in a Heavy-Duty Diesel Engine with Cooled-EGR (Cooled-EGR 대형디젤기관의 성능 및 배기가스에 관한 실험적 연구)

  • 한영출;오용석;오상기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.1-8
    • /
    • 2001
  • It is a present situation that the control on automobile emission is getting more restrictive and also the regulations for emission are changing greatly up to level of those advanced foreign countries. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the Exhaust Gas Recirculation (EGR) and the target for this research is heavy-duty turbo-diesel engine with Cooled EGR. Furthermore, this research has been made efforts to accomplish the regulation on emission for heavy duty diesel engine.

  • PDF

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.