• Title/Summary/Keyword: Diesel Injection

Search Result 954, Processing Time 0.033 seconds

The Emission Characteristics of a 4-stroke Large Diesel Engines for Propulsion and Generation Application in IMO modes (주.보기용 4행정 대형디젤엔진의 IMO운전모드에 따른 배기 배출특성)

  • 김현규;김규보;전충환;장영준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1472-1479
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke marine diesel engines in E3 cycle (propulsion application) and D2 cycle (generation application). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure on the specific emissions are described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than that in D2 cycle due to lower engine speed at low load and the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

Effect of Injection Timing and Injector Hole Number on Emission Characteristics for Off-road Diesel Engine (비도로용 디젤엔진의 분사시기 및 인젝터 변경에 따른 배출가스 특성 연구)

  • Kim, Hoon Myung;Kang, Jeong Ho;Han, Da Hye;Jung, Hak Sup;Pyo, Su Kang;Ahn, Jueng Kyu
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.15-20
    • /
    • 2014
  • Environmental regulations are being reinforced for the solution of environmental pollution, that are global issues. Exhaust gas regulations of off-road engines also demand stepwise reduction emission from beginning of Tier 4 interim(2013). Characteristically, Tier 4 regulation apply the NRTC mode which is a transient cycle. And technical studies using NRTC mode are uncommon. In this study, for satisfy the Tier 4 final regulation on the NRTC mode, experimental study was conducted using a 3.4 L off-road engine. Fuel injection timing and injector hole number are chosen as parameters for investigation of combustion and exhaust gas characteristics on off-road diesel engine.

A Study on Effect of Recirculated Exhaust Gas upon Wears of Piston and Piston Rings in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 피스톤 및 피스톤링 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 배명환;하정호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.79-86
    • /
    • 2000
  • The effects of recirculated exhaust gas on the wears of piston and piston rings were investigated by the experiment with a two-cylinder, four cycle, indirect injection diesel engine operating at an engine load of 75% and an engine speed of 1600 rpm. For the purpose of comparison between the wear rates of two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot contenets in exhaust emissions were removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out on the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR, and that the wear rates of the top and second piston ring(compression ring)thickness with EGR were more than twice the wear rate of top ring in case of no EGR, but the wear rate of oil rings thickness without EGR increased greater than that with EGR.

  • PDF

Combustion and Emission Characteristics of Passenger Car Common-rail Diesel Engine with DME Fuel (DME를 이용한 승용 디젤 커먼레일 엔진의 연소 및 배기특성)

  • Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2010
  • This paper described the effects of DME blended fuel on the engine combustion and emission characteristics of four cylinder CRDI diesel engine. Biodiesel was added into the DME fuel in order to improve the low kinematic viscosity of DME fuel. In this work, the experiment was performed under th various injection timings and injection strategy at constant engine speed and engine load. To maintain the fuel pressure and temperature, pressure and temperature controllers were installed to the DME fuel system. The results show that ignition delay was shortened and combustion duration was extended when DME blended fuel is supplied. Despite of slightly higher NOx emission with DME blended fuel at equal conditions in comparison with those of diesel fuel, the engine showed lower HC and CO emission characteristics.

A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine (대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구)

  • Jeong, Soo-Jin;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

Experimental Investigation of Entrainment of Ambient Gases into Diesel Spray (디이젤 噴霧 周圍氣體의 엔트레인먼트에 관한 實驗的 硏究)

  • 하종률;김봉곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.534-540
    • /
    • 1988
  • A study on the mixing process of fuel with ambient gas is necessary to verify combustion process of a diesel engine, especially the mechanism of its ignition delay. In this study, a single shot of diesel spray was injected through either a constant pressure injection system and bypass type injection system. Measurements were made on the flow characteristics of ambient gas and its time history using a hot wire anemometer and a high speed camera. The gas flow direction was determined by a smoke tracer method. (1) The ambient gas of spray flows away at the stagnation part where static pressure value is positive and flows in at the penetration part of a negative value with the steady entrainment length of 0.7. (2) The steady entertainment velocity around the spray in creases from the nozzle tip to the downstream, has the maximum value at the mixing boundary part, and represents zero at the stagnation boundary part after which the stream flows reversely at the stagnation part.

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

A Experimental Study on the Emission Characteristics in Stroke Propulsion Diesel Engine for Ship (선박용 주기용 4행정 디젤엔진의 배기배출물 배출 특성에 관한 실험적 연구)

  • 김현규;김종기;전충환;장영준
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-127
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

Case Study of Diagnosis on Musculoskeletal Disorders Risk Factors at an Diesel Engine Fuel Injection System Manufacturing Company (디젤엔진용 연료분사장치 제조업체의 근골격계 질환 유해요인 조사 사례연구)

  • Yang, Sung-Hwan;Cho, Mun-Son;Kang, Young-Sig
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • The goal of this study is to propose the effective method of investigating the injurious factors and making improved plans that prevents the workers against musculoskeletal disorders at an diesel engine manufacturing company and the same business field with similar working conditions and process. A questionnaire were adopted to analyze the symptoms of workers' musculoskeletal disorders, and an ergonomic assessment method such as RULA, OWAS were performed to find out harmful factors of workplace and working posture. Based on the result of the evaluation, to enhance the working environment, improvement of worktable, working space, tools, and outfit was suggested, and induction of mechanical system was also suggested. It can be concluded that the method and process described in this paper could be helpful for diagnosing the musculoskeletal disorders and making improvement plans to the diesel engine fuel injection system manufacturing company and the same business field with similar working conditions and process.

Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray (주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF