• Title/Summary/Keyword: Diesel Index

Search Result 73, Processing Time 0.026 seconds

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.72-79
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

  • PDF

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Dae-Kwon Ko;Soo-Kil Ahn
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.26-26
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

A Study on Reduction Effects of Air Pollutant Emissions by Automotive Fuel Standard Reinforcement (자동차연료 기준강화에 따른 대기오염물질 배출량 저감효과)

  • Lim, Cheol-Soo;Hong, Ji-Hyung;Kim, Jeong-Soo;Lee, Jong-Tae;Lim, Yun-Sung;Kim, Sang-Kyu;Jeon, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • The air pollutants from vehicle exhaust gas are affected by many factors including fuel qualities, engine and vehicle technologies, driving patterns. In particular, fuel qualities and after-treatment devices could directly affect the emission level of pollutants. The pollutant reduction characteristics that caused by enforced fuel quality standard were analyzed. Three types of test fuel were selected in accordance with Korean automotive fuel standard in 2006, 2009, 2012 and used for vehicle emission test in chassis dynamometer. European COPERT correction equation of fuel impact was considered as reference information to quantify the vehicle emission test results. The contribution rates of exhaust emission by COPERT correction equation showed that aromatic compounds and oxygen contents in gasoline fuel was most important. In case of diesel fuel, cetane index and polycyclic aromatic compounds accounted for the greater part. The exhaust emission effects by COPERT correction equation revealed that CO and VOC was increased 0.86%, 1.57% respectively in after 2009 gasoline when compared to before 2009 gasoline fuel. In case of light-duty diesel vehicle CO, VOC and PM were decreased in range of 3~7%. The result from this study could be provided for developing future fuel standards and be used to fundamental information for Korean clean air act.

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.

Effects of Inflation Indexed Excise Duties on Transportation Fuel Consumption Using Demand Analysis based on the Linear Expenditure System in Korea (선형지출체계 수요함수 추정을 통한 수송용 유류 종량세의 물가연동제 도입효과 분석)

  • Sung, Myung Jae
    • Environmental and Resource Economics Review
    • /
    • v.26 no.2
    • /
    • pp.257-286
    • /
    • 2017
  • This paper estimates the effects of imaginary repeated increases in excise duties on fuel oil consumption and on their income redistribution according to changes in consumer price index, if the inflation indexation system was introduced right after the second Energy Tax Reform ended in July, 2007 in Korea. In fact, nominal excise rates have not been adjusted since 2007. As a result, the real excise rates on fuel oils have been diminished inversely proportional to the consumer price index. Own- and cross-price elasticities of fuel oils such as gasoline and diesel oil are estimated under the general equilibrium framework based on the linear expenditure system. Counterfactual analyses through microsimulation in a static model are adopted to estimate the effects of introducing inflation indexation into the fuel tax in 2007 when the second Energy Tax reform ended on the fuel consumption and income redistribution in 2014. Microsimulations suggest that its introduction could have reduced the consumption of gasoline and diesel oil by 8.8% and 5.4%, respectively, ending up with increased excise revenue by 11.9%. The revenue increase in spite of decreased consumption is mainly because their demands are price inelastic. It could also have increased positive income redistributive effect by 0.01%p (from 0.12% to 0.13%), which is measured in terms of percentage decrease in Gini coefficient. In other words, the fuel excise on the two fuel oils decreased by 0.13% the Gini coefficient of before and after fuel tax income in 2014. This implies that the inflation indexation could have enlarged the income redistributive effect up to 0.13% in 2014, if it is introduced in 2007.

Pin-Boss Stress Analysis Coupled with Oil Film Pressure of a Diesel Engine Piston Receiving 200 bar Combustion Pressure (200 bar 연소압을 받는 디젤엔진 피스톤 핀-보스의 유막 압력을 고려한 응력해석)

  • Chun, Sang-Myung;Lee, J.S.;Joo, D.H.;Park, S.J.
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.196-204
    • /
    • 2008
  • In this study, the pressure distributions on the oil film of piston pin bearings are found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. The lubrication analysis is carried out together with an equation related with the oil pressure-viscosity index. The oil film pressure distribution is used as an input data for pressure boundary conditions at the piston pin-boss surface. Finally, the piston pin-boss stress distribution coupled with the thermal stress is calculated, and then compared with the results of the stress analysis which is not counted with the oil film pressure boundary condition.

A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities (오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구)

  • Kim, Chung-Kyun;Lee, Byoung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

A Numerical Study on the Flow Characteristics in the Catalytic Muffler with Different Inlet and Outlet Configurations (입구 및 출구 형상 변화에 따른 촉매 삽입형 머플러 내부의 유동 해석)

  • An, Tae Hyun;Lee, Seung Yeop;Park, Yun Beom;Kim, Man Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Lack of the space in many diesel vehicles make it difficult to design and install the catalytic muffler to reduce emissions. For this reason, inlet part of the catalytic muffler is made of L-type which has lower flow uniformity than conventional I-type, and catalytic muffler has complex internal structure by various insertions, which affect the flow uniformity and pressure drop of the systems. In this work, the flow characteristics such as flow uniformity and pressure drop have been numerically investigated by changing such various geometries as inlet shape, porosity, and outlet shape inside the muffler with the three-dimensional turbulent incompressible flow solver. Total 4 different cases are considered in order to find optimal configurations of the catalytic muffler in view of high flow uniformity and low pressure drop. The results show that Case 2 which has no induction cone and outlet perforated pipe has higher uniformity index and lower pressure drop than others considered in this work.