• Title/Summary/Keyword: Diesel Index

Search Result 73, Processing Time 0.021 seconds

A Study on the Chamical and Physical Characteristics of Ultrasonic-Energy-Added Diesel Fuel (초음파 에너지 부가 지젤연료의 화학적, 물리적 특성에 관한 연구)

  • 최두석;윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • This study investigated the characteristics of ultrasonic-energy-added diesel fuel. We compared the characteristics used H-NMR spectrum, FT-IR spectrum, viscosity and surface tension between conventional diesel fuel and ultrasonic-energy-added diesel fuel. The result are obtained as follow : We knew that ultrasonic energy result to reduce BI and weaken viscosity and surface tension. Also, the ultrasonic energy caused to reduce aromatics Ha and increase Alkanes Hγ. The effect of ultrasonic-energy-added dieselfuel was principally caused by change of chemical structures and a physical characteristics.

  • PDF

A Study on the Local Instantaneous Flame Temperature and Soot Formation and Oxidation in a Diesel Engine (디젤엔진에서 국소 순간 화염온도와 Soot 생성 및 산화에 관한 연구)

  • 이선봉;이태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The instantaneous flame temperature and soot formation and oxidation in a D. I. diesel engine are measured by using a two-color method. The proposed method based on the continuous spectral radiation from the soot particles in flames is applicable to industrial diesel engines without major modifications of their main characteristics. Measurements are performed at one location inside the combustion chamber of a D.I. diesel engine. Effects of different engine speeds and loads on flame temperature and KL factor which is an index of soot concentrations were examined. A little temperature change were observed with increasing engine speed, while increased with loads. The higher the flame temperature is, the lower the KL factor is.

  • PDF

Characteristics of Bio-diesel according to Irradiation for Ultrasonic Energy (초음파 에너지 조사에 따른 바이오 디젤 특성)

  • Park, Chungyeol;Choi, Dooseuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.214-220
    • /
    • 2015
  • Since resources of fossil fuels are limited, development of alternative energies is emphasized and research on new-regenerative energy is actively in progress worldwide. In present research, physical and chemical characteristics of mixed fuel are analyzed in detail for the different mixture rate of conventional and bio-diesel and ultrasonic irradiation time. Experimental setup consists of ultrasonic generator, vibrator, horn, and reflector. Various physical and chemical characteristics of fuel are investigated for volumetric mixture rate of bio-diesel from 0 to 100%. As results, viscosity and surface tension is increased as mixture rate of bio-diesel is increased. Also, molecular splits and reunions are increased and decreased repeatedly after some period of time as ultrasonic energy irradiation time is increased. As conclusion of experiments, Olefin rate, Branch index, and Aromatic rate are influenced by ultrasonic irradiation time.

Determination of Correlation between Cetane Number, Derived Cetane Number and Cetane Index for Diesel Fuel (경유연료의 세탄가, 유도세탄가 및 세탄지수의 상관관계 분석)

  • Jeon, Hwayeon;Kim, Ji Yeon;Kim, Shin;Yim, Eui Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1134-1144
    • /
    • 2018
  • Cetane Number is one of the quality standard for diesel, which assesses the compatibility of ignition quality of diesel compression in diesel engines. Cetane number must be upper 52 to keep the recent diesel quality standards. It is known that if cetane number is high, there will be shorter ignition delay periods than being lower. On the other hands, if cetane number is too high that exceeds the quality standard, there will increase the air pollution and decrease of the fuel efficiency because incomplete combustion. In South Korea, various methods are being used to measure the cetane number such as cetane number that used CFR engine, cetane index from calculate density and distillation temperature and derived cetane number to make up for CFR engine that ignition delay in high temperature is implemented. In this study will be conducted by collecting the diesel from the major oil companies, and try to analyze the correlation between the different methods of cetane number with various factors. At the results of this study, it was shown that the cetane index is high then cetane engine and derived cetane number. therefore it will be necessary to additional research for out of cetane number quality standards.

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

A Study on the Calcuation of NO Formation in Cylinder for Diesel Engines (디젤기관의 연소실내 NO 생성농도 예측에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.543-551
    • /
    • 1999
  • Diesel engine is a major source of the air pollution. In general the concentrations of these pollu-tants in diesel engine exhaust differ from values calculated assuming chemical equibrium. Thus the detailed chemical mechanisms by which these pollutions form and the kinetic of these process-es are important in determining emission levels. In this study the computer program has been developed to calculate the required thermodynam-ic properties of combustion products(10 spacies) for both equilibrium and non-equilibrium in cylin-der for diesel engines. Nitric oxide emissions are calculated by using the extended Zeldovich Kinet-ic mechanism with a steady state assumption for the N concentration and equilibrium values used for H, O, $O_2$ and OH concentrations. By the results it is confirmed that developed simulations program with the NO prediction model is validated against residual mass fraction combustion index of Wiebe's functions pre-mixed com-bustion ration fuel injection timing.

  • PDF

Numerical Study of Impact for Particulate Matter Reduction Device According to Installation of Perforated Plate and Mixer on Marine Diesel Engine (선박용 디젤엔진의 미세먼지저감 장치에 다공판과 믹서의 장착이 미치는 영향에 대한 수치해석적 연구)

  • Yun, Byoungkyu;Cho, Sanghyun;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.968-973
    • /
    • 2019
  • This study presents the characteristics of a pressure drop and uniformity index for a particulate matter reduction device with a perforated plate and mixer for marine diesel engines. The perforated plate and mixer equipped on the particulate matter reduction device induce an increase of exhaust gas reduction performance by increasing the uniformity index. Whereas, the perforated plate induces pressure drop increases in the particulate matter reduction device. Therefore to calculate the effect of the uniformity index and pressure drop of the perforated plates and mixer, this study combines several cases using five types of perforated plates and one type of mixer. Consequently, these results were analyzed to determine the optimized type and position of the perforated plate and mixer.

Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam (금속폼을 이용한 Partial DPF의 설계 및 전산유체해석 연구)

  • Yoon, Cheon-Seog;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • DPF(Diesel Particulate Filter)s have been used to reduce the most of PM(particulate matters) from the exhaust emissions of diesel engine vehicles. Metal foam is one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. It can be fabricated with various pore sizes and struct thickness and coated with catalytic wash-coats with low cost. In order to design metal foam filter and analyze the flow phenomena, pressure drop and filtration experiment are carried out. Partial DPF which has PM reduction efficiency of more than 50 % is designed in this paper. Also, CFD analysis are performed for different configurations of clean filters in terms of pressure drop, uniformity index, and velocity magnitude at face of filter. Filter thickness and the gap between front and rear filters are optimized and recommended for manufacturing purpose.

A Study on Effects of the Changes in Lower Combustion Pressures and Pressure-Viscosity Index on Pin-Boss Bearing Lubrication of a Diesel Engine Piston Receiving High Combustion Pressure (연소실 저압변화와 압력-점도지수가 디젤엔진 고압피스톤의 핀-보스 베어링 윤활에 미치는 영향 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.55-62
    • /
    • 2008
  • In recently designed diesel engines, the running conditions for piston pin bearings have become very severe due to combustion pressure and temperature increase. In this paper, it will be investigated the tendency of piston pin rotating motion by calculating the friction coefficient at piston pin bearings, the oil film thickness and the frictional torques induced by hydrodynamic shear stress. Finally, the pressure distributions on the oil film of piston pin bearings will be found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. Specially, it is investigated how the changes in combustion pressure at exhaust and intake stroke and the pressure-viscosity index effect on the film pressure distribution.

Causes of Air pollution and Effects of Mitigation Policy in Korea (우리나라 대기오염배출 원인과 저감 정책 효과 분석)

  • Bae, Jeonghwan;Kim, Yusun
    • Environmental and Resource Economics Review
    • /
    • v.25 no.4
    • /
    • pp.545-564
    • /
    • 2016
  • Recently as fine and ultra fine particles become major environmental issues in Korea, it is very important to develop effective solutions to air pollution. Accordingly this study aims at detecting causes of air pollution by using models and examining if diesel price increases contribute to reduction of diesel consumption and air pollution. TSP, PM10, $NO_X$, $SO_X$, CO, and VOC are included as major air pollutants. As a result, we found invert U shape curve between pollution and income for all air pollutants except CO. Consumer price index, coal power capacity, diesel consumption, frequency of yellow dust, number of natural gas buses, number of transport business, annual average temperature, number of manufacturing businesses are also influential in explaining causes of air pollution. As diesel price increases by 1%, air pollutants decline between 0.07~0.12% in the short run. Simultaneously, the additional revenue from increases in diesel prices might be transferred to support expansion of biofuel market. Also, stronger policy should be developed to mitigate the current air pollution problem.