• 제목/요약/키워드: Diesel Cycle Engine

검색결과 206건 처리시간 0.024초

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성 (Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine)

  • 김현수;김우영;배충식
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.

Urea-SCR 시스템의 Map 기반 Open Loop 제어알고리즘 개발 (Development of Map based Open Loop Control Algorithm for Urea - SCR System)

  • 함윤영;박용성
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.50-56
    • /
    • 2011
  • To meet the NOx limit without a penalty of fuel consumption, Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, map based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. The basic urea quantity set-value which was calculated using the look up tables of engine out NOx, exhaust flow rate and optimum NSR resulted in NOx reduction of 80% and the average $NH_3$ slip of 24 ppm and maximum of 79 ppm. In order to reduce $NH_3$ slip, $NH_3$ storage control algorithm was applied to correct the basic urea quantity and reduced $NH_3$ slip levels to the average 15 ppm and maximum 49 ppm while keeping NOx reduction of 76%. With high and increasing SCR temperature, the $NH_3$ storage capacity decreases, which leads to $NH_3$ slip. The resulting $NH_3$ slip peak can be avoided by stopping or significantly reducing the urea injection during the SCR temperature gradient is over $30^{\circ}C/min$.

경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구 (Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF)

  • 김정환;김기호;이정민
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.

디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II) (Characterization of SCR System for NOx Reduction of Diesel Engine (II))

  • 이준성;김남용
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.

체적효율을 고려한 가변밸브 개폐시기의 조정에 의한 실린더내 잔류가스량에 관한 연구 (A Study on the Residual Gas Fraction in Cylinder by the Adjustment of Variable Valve Timing with Volumetric Efficiency)

  • 남정길
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.82-88
    • /
    • 2001
  • The EGR is needed fur one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated. That is a reason why we consider using the internal EGR system. The internal EGR is a system which reduces NOx by controling the residual gas fraction in cylinder by changing valve timing and valve lift of intake and exhaust. In this paper, characteristics of volumetric efficiency and residual gas fraction in cylinder were investigated for various engine speeds by changing valve timing and valve lift of intake and exhaust in the 4 stroke-cycle diesel engine. Volumetric efficiency and residual gas fraction were calculated by the method of characteristics. As the results, residual gas fraction and volumetric efficiency in cylinder by variable valve timing were visualized.

  • PDF

Off-cycle에서 Euro 6a, 6b 및 6d 규제 만족 디젤 자동차의 NOx 배출 특성 (NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a, 6b and 6d Regulations on Off-cycles)

  • 김정환;김성우;김기호
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.136-148
    • /
    • 2018
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission (RDE) regulation and the test method that will be applied after 2017. In this paper, for the regulation to make a soft landing in Korea, 6 diesel passenger cars which met Euro 6a~6d regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles (FTP, US06, SC03, HWFET and CADC) and several ambient conditions (-7 and $14^{\circ}C$) as well as certification modes (NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.

Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구 (A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System)

  • 함윤영;박수열
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구 (Study on the Performance Characteristics of Urea-SCR System in the ETC Test)

  • 함윤영;최동석;박용성
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.

시뮬레이터를 이용한 중형 저상버스의 주행성능 예측 (Driving Performance Prediction for Low-floor Midsize bus Using Simulator)

  • 김기수;김진성;박영일;이치범
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.541-547
    • /
    • 2015
  • In this study, the performance of a low-floor midsize bus under development is predicted through simulations. To predict the vehicle's acceleration, maximum speed, and uphill driving performance, a forward simulator which calculates the vehicle power is developed. Also we verify the forward simulator by comparing simulations and test result for benchmarking vehicle. To predict the fuel consumption, we use a backward simulator for a specified road cycle. However, to predict the fuel consumption using the backward simulation the engine fuel-consumption map is needed. The engine fuel-consumption map extracting data from a similar sized diesel engine is used by re-scaling the maximum torque. As a result, we simulate the vehicle's forward performance with a new engine. Further, we simulated the backward performance to optimize the fuel efficiency and gearshift timing.