• Title/Summary/Keyword: Diesel Aftertreatment Systems

Search Result 7, Processing Time 0.026 seconds

Numerical study on the Air Flow Characteristics inside a DPF with Diffuser Shape (확대관 형상에 따른 DPF 내의 유동특성 해석)

  • Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Kim, Soong-Kee;Kim, Seong-Kyu
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.796-802
    • /
    • 2005
  • Numerical analysis has been conducted for improving air flow characteristics in the exhaust aftertreatment system of diesel-fueled passenger cars by changing axial length and cone shape of a DPF diffuser. The results of air velocity and static pressure distributions along with air flow uniformity results suggest that a diffuser shape with 2D or 3D function type is better for air flow patterns in front of a DPF.

  • PDF

A Study on the Conversion Performance of Lean NOx Trap for a 4-stroke Diesel Engine (4기통 디젤엔진에서의 Lean NOx Trap 촉매 정화 특성에 관한 연구)

  • Han, Joon-Sup;Oh, Jung-Mo;Lee, Ki-Hyung;Lee, Jin-Ha
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • Diesel engine has many advantages such as high thermal efficiency, low fuel consumption and low emission of CO2. However, the diesel engine faced with strengthened emission regulation about NOx and PM. To suppress NOx emission, after-treatment systems such as Lean NOx Trap (LNT), Selective Catalytic Reduction (SCR) are considered as a more practical strategy. This paper investigated the performance of Lean NOx trap of the 4 stroke diesel engine which had a LNT catalyst. Characteristic of exhaust emission at NEDC mode was analyzed. From this result, the effect of nozzle attaching degree, injection quantity and gas flow change on NOx conversion performance was clarified.

Fast and Brand-Specific Calibration of Fuel-efficient Powertrains

  • Dobes, Thomas;Leithgoeb, Rainer;Bachler, Johann;Schoeggi, Peter
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.25 no.4
    • /
    • pp.74-82
    • /
    • 2003
  • Future emission legislation requirements especially the need for CO$_2$ reduction lead to more complex powertrain concepts with an increasing number of independent parameters to be calibrated. For gasoline engines concepts with variable valve timing, direct injection or variable charge motion are in development or already on production. Diesel engines with common rail systems offer a wide range of new injection strategies, the application of new exhaust aftertreatment systems leads to additional complexity. Furthermore a clear trend to highly sophisticated transmission concepts requires a perfect interaction of all powertrain components. While the higher complexity requires increasing test and development effort, the development duration is reduced significantly. Consequently, the potential of such systems cannot be fully utilised by traditional development and calibration approaches within the given timeframe. By introduction of intelligent methodologies f3r the calibration of modem powertrains the development becomes more efficient, faster and better in quality. However, even with standardised and automated calibration methods a differentiated brand-specific powertrain character has to be maintained comparable to a "handmade" calibration performed by highly experienced experts.

  • PDF

The experimental study of post injection effect on exhaust gas temperature and composition in a common rail DI diesel engine (커먼레일 디젤엔진에서 후분사 변화가 배출가스 성분 및 온도 변화에 미치는 영향에 대한 실험적 연구)

  • Chung, Jae-Wook;Chang, Dong-Hoon;Park, Jung-Kyu;Chun, Kwang-Min
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • The post injection effect to enhance aftertreatment devices' performance is essential to meet future stringent emission standards by controlling exhaust gas temperature and emission pollutants. The test has been made with commercial common rail diesel engine by post injection manipulation, to optimize exhaust gas temperature while guarantee low fuel penalty. The optimization was done at 1500, 2000 and 2500[rpm] for 2, 4[bar] condition which show low exhaust gas temperature. The main purpose of this test is dedicated to understand mechanism of exhaust gas temperature rise while optimizing

  • PDF

Particle Emission Characteristics of Heavy-duty Diesel Engine using Aftertreatment Systems (후처리장치 부착에 따른 대형디젤엔진의 입자 배출특성)

  • Kwon, Sangil;Park, Yonghee
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.146-151
    • /
    • 2012
  • This study was primarily focused on the experimental comparison of the particle emission characteristics for heavy duty engine. PM and particle number from various heavy duty engines and DPF type were analyzed with a golden particle measurement system recommended by the Particle Measurement Program. And the repeatability and reproducibility between test mode was analyzed. This study was conducted for the experimental comparison on particulate emission characteristics between the European and World-Harmonized test cycles for a heavy-duty diesel engine. To verify the particulate mass and particle number concentrations from various operating modes, ETC/ESC and WHTC/WHSC, both of which will be enacted in Euro VI emission legislation, were evaluated. Real-time particle formation of the transient cycles ETC and WHTC were strongly correlated with engine operating conditions and after-treatment device temperature. A higher particle number concentration during the ESC mode was ascribed to passive DPF regeneration and the thermal release of low volatile particles at high exhaust temperature conditions.

Numerical Modeling of Vanadia-based Commercial Urea-SCR plus DOC Systems for Heavy-duty Diesel Exhaust Aftertreatment Systems (바나듐 기반의 Urea-SCR과 DOC가 결합된 Heavy-Duty 디젤 배출가스 후처리 시스템의 SCR De-NOx 성능 향상에 관한 수치해석 연구)

  • Yun, Byoung-Kyu;Kim, Chong-Min;Kim, Man-Young;Cho, Gyu-Baek;Kim, Hong-Suk;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • In this study, numerical experiments were carried out to estimate the SCR De-NOx performance in DOC plus SCR systems. The SCR De-NOx phenomena are described by Langmuir-Hinshelwood reaction scheme. After validating the present approach by comparing the present results with the experimental results, such various parameters as space velocity, $H_2O$ concentration, $NO_2$/NOx ratio and relative volume of DOC are explored to increase the SCR De-NOx performance. The results indicate that SCR De-NOx performance largely depends on space velocity and $NO_2$/NOx ratio, especially below $200^{\circ}C$. SCR De-NOx performance is seriously affected by relative volume of DOC with SCR due to increasing in $NO_2$/NOx ratio at below $250^{\circ}C$.

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity (Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계)

  • Lee, Dae-Won;Sung, Ju Young;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.281-290
    • /
    • 2018
  • As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.