• 제목/요약/키워드: Dieless Incremental Sheet Metal Forming

검색결과 8건 처리시간 0.024초

무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구 (Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming)

  • 이승진;김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

Dieless CNC Forming 을 위한 CAD/CAM 시스템 개발 (Development of CAD/CAM system for dieless CNC forming)

  • 최동우;진영길;강재관;왕덕현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 2004
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

머시닝센터 기반의 Dieless CNC Forming 시스템 개발 (Dieless CNC Forming System based on a Machining Center)

  • 최동우;강재관
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.184-187
    • /
    • 2004
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF

마이크로 다이레스 성형 시스템을 이용한 금속박판소재의 마이크로 패턴 성형 (Micro pattern forming on the metal thin foil Using micro dieless forming system)

  • 이혜진;이형욱;박진호;이낙규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.379-382
    • /
    • 2007
  • The MEMS (Micro Electro Mechanical Systems) process is used in a micro/nano pattern manufacturing method. This method is based on the lithography technology. But the MEMS process has some problems such as complicated process, long processing time and high production costs. Many researchers are doing research in substitute manufacturing method to work out a solution to these problems. In this paper, we apply a dieless incremental forming technology to a substitute method of MEMS process. This dieless forming technology is using in the commercial scale sheet forming such as a prototype of automobile sheet parts. 5-axes CNC (Computerized Numeric Control) method are applied in this system to get a micro-scale dieless forming results. These 5-axes system are composed of precision AC servo motor stages (4-axes) and PZT actuator (1-axis). A PZT actuator is used in a precision actuating axis because it can be operated in the nano scale stroke resolution. This micro dieless incremental forming system has the advantage of minimization in manipulating distance and working space. As equipment and tools become smaller in size, minute inertia force and high natural frequency can be obtained. Therefore, high precision forming performance can be obtained. This allows the factory to quickly provide the customer with goods because the manufacturing system and process are reduced. To construct this micro manufacturing system, many technologies are necessary such as high stiffness frame, high precision actuating part, structural analysis, high precision tools and system control. To achieve the optimal forming quality, the micro dieless forming system is designed and made with high stiffness characteristic.

  • PDF

STL offset을 이용한 다이레스 CNC 포밍용 등고선 공구경로 생성 (Contouring Tool Path Generation for Dieless CNC Forming using STL Offset)

  • 강재관;최동우
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.191-198
    • /
    • 2006
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In this paper, a method of NC tool path generation based on an STL file for dieless CNC forming is proposed. Tool trajectory adopts the principle of layered manufacturing in rapid prototyping technology, but it is necessary to consider STL offset because of the ball shaped tool with a radius. Vertex offset method which enables to compute offset STL directly is engaged for STL offset. The offseted STL is sliced by cutting planes to generate contouring tool path. Algorithm is implemented on a computer and experimented on a dieless CNC forming machine to show its validity.

다이레스 CNC 포밍을 이용한 자동차용 브레이크 더스트 쉴드 시작품 제작 (Prototyping the Brake Shields of a Vehicle by Dieless CNC Forming Technology)

  • 이홍주;강석호;염경섭;강병수;왕덕현;강재관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.529-530
    • /
    • 2006
  • Manufacturing industry is changing rapidly. Prototyping with rapid manufacturing is a part of every business in many companies and prototypes are used efficiently as a part of the production development process. Sheet metal forming has traditionally been a technology area where prototyping has been extremely expensive and efficient options for low volume have been limited. This paper describes the process for incremental sheet forming technologies to make the prototype for a brake dust shield of vehicles, which includes the remodeling method to make a base mold and tool path for sheet metal forming and 5-axes laser cutting machine to trim the prototype product.

  • PDF

다이레스 CNC 포밍을 위한 등고선 공구경로 생성 (Contouring Tool Path Generation for Dieless CNC Forming)

  • 강재관;진영길;윤세봉;강병수;염경섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1753-1756
    • /
    • 2005
  • The sheet parts are formed with dies conventionally. But this conventional forming process is not suited to small volume and varied production for the reason of high cost. For the solution of this problem, a new forming process, which is called CNC incremental sheet forming, is being introduced. This process can form sheet parts without die, and is very well suited to small volume and varied production in space flight and automobile. In this paper, dieless CNC forming system based on a machining center is developed. A special device to grasp and pull the blank sheet built in the machining center and tool path generation S/W from STL file of 3-D model are developed. Several sheet parts are incrementally formed to verify the effectiveness of the developed system.

  • PDF