• Title/Summary/Keyword: Dielectric-Barrier-Discharge Plasma

Search Result 204, Processing Time 0.024 seconds

Characteristics of Packed-bed Plasma Reactor with Dielectric Barrier Discharge for Treating (에틸렌 처리를 위한 충진층 유전체배리어방전 플라즈마 반응기의 특성)

  • Sudhakaran, M.S.P.;Jo, Jin Oh;Trinh, Quang Hung;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.495-504
    • /
    • 2015
  • This work investigated the characteristics of a packed-bed plasma reactor system and the performances of the plasma reactors connected in series or in parallel for the decomposition of ethylene. Before the discharge ignition, the effective capacitance of the ${\gamma}$-alumina packed-bed plasma reactor was larger than that of the reactor without any packing, but after the ignition the effective capacitance was similar to each other, regardless of the packing. The energy of electrons created by plasma depends mainly on the electric field intensity, and was not significantly affected by the gas composition in the range of 0~20% (v/v) oxygen (nitrogen : 80~100% (v/v)). Among the various reactive species generated by plasma, ground-state atomic oxygen and ozone are understood to be primarily involved in oxidation reactions, and as the electric field intensity increases, the amount of ground-state atomic oxygen relatively decreases while that of nitrogen atom increases. Even though there are many parameters affecting the performance of the plasma reactor such as a voltage, discharge power, gas flow rate and residence time, all parameters can be integrated into a single parameter, namely, specific input energy (SIE). It was experimentally confirmed that the performances of the plasma reactors connected in series or in parallel could be treated as a function of SIE alone, which simplifies the scale-up design procedure. Besides, the ethylene decomposition results can be predicted by the calculation using the rate constant expressed as a function of SIE.

Effect of Intermittent Plasma Discharge on the Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides (간헐적 플라즈마 방전이 질소산화물의 탄화수소 선택적 촉매환원에 미치는 영향)

  • Kyeong-Hwan Yoon;Y. S. Mok
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.507-514
    • /
    • 2023
  • The selective catalytic reduction (SCR) of nitrogen oxides (NOx) was investigated in a catalyst (Ag/γ-Al2O3) packed dielectric barrier discharge plasma reactor. The intermittent generation of plasma in the catalyst bed partially oxidized the hydrocarbon reductant for NOx removal to several aldehydes. Compared to using the catalyst alone, higher NOx conversion was observed with the intermittent generation of plasma due to the formation of highly reductive aldehydes. Under the same operating conditions (temperature: 250 ℃; C/N: 8), the NOx reduction efficiencies were 47.5%, 92%, and 96% for n-heptane, propionaldehyde, and butyraldehyde, respectively, demonstrating the high NOx reduction capability of aldehydes. To determine the optimal condition for intermittent plasma generation, the high voltage on/off cycle was adjusted from 0.5 to 3 min. The NOx reduction performance was compared between continuous and intermittent plasma generation on the same energy density basis. The highest NOx reduction efficiency was achieved at 2-min high voltage on/off intervals. The reason that the intermittent plasma discharge exhibited higher NOx reduction efficiency even at the same energy density, compared to the continuous plasma generation case, is that the intermediate products, such as aldehydes generated from hydrocarbon, were more efficiently utilized for the reduction of nitrogen oxides.

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

Effect of Cold Plasma on Total Polyphenol Content and Anti-Inflammatory Activities of Peanut (Arachis hypogaea L.) Hull

  • Mihyang Kim;Yeo Ul Cho;Narae Han;Jin Young Lee;Yu-Young Lee;Moon Seok Kang;Hyun-Joo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.330-330
    • /
    • 2022
  • In recent studies, cold plasma has been used to induce exudation of polyphenols and flavonoids from food materials, leading to enhancement of functional properties. And it is known that polyphenols interact with inflammation related metabolism. The objectives of this study were to investigate the effects of cold plasma treatments on the increase of total phenolic content (TPC), total flavonoid content (TFC), and anti-inflammatory activities of 'Sinpalkwang' peanut (Arachis hypogaea L.) hull. Plasma treatments were carried out using a dielectric barrier discharge gas exchange system at different radicals and temperatures (O3-25℃, O3-150℃, NOx-150℃). Significant differences in TPC, TFC, and inflammatory mediator such as nitric oxide (NO) and tumor necrosis factor a (TNF-α) in lipopolysaccharide stimulated Raw 264.7 macrophages were observed between treated and non-treated peanut hull samples (p < 0.001). Cold plasma treated samples showed higher content (TPC: 2.87-2.93 mg/g sample, TFC: 0.96-0.98 mg/g sample) than non-treated sample (TPC: 2.47 mg/g sample, TFC: 0.78 mg/g sample). Cold plasma treated samples showed lower content of NO (3.3-5.0 uM) and TNF-α (141.4-162.2 ng/mL) than non-treated sample (NO: 11.1 uM, TNF-α: 210.2 ng/mL). This study suggests that cold plasma has potential to improve functionalities of food materials and that cold plasma treated peanut hull can be used as immune enhancing materials.

  • PDF

Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감)

  • Lee, Changwook;Sim, Ju-Hyeong;Han, Sunghyun;Yun, Su Hwan;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Dielectric barrier discharge (DBD) plasma actuator was designed to reduce aerodynamic drag in a cylindrical model and wind tunnel test was performed at various wind velocities. In addition, computational fluid dynamics (CFD) analysis and flow visualization were used to investigate the effect of the plasma on the flow stream in the cylinderical model. At low wind velocity, the plasma actuator had no effects because flow separation did not appear. The aerodynamic drag was reduced by 14% at 14 m/s and by 27% at 17 m/s, respectively. It was confirmed by CFD analysis and flow visualization that the DBD plasma actuator decreased in pressure difference around the cylindrical model, thus decreasing the magnitude of wake vortex.

Evaluation of Nonthermal Plasma Treatment by Measurement of Stored Citrus Properties

  • Seo, Youngwook;Park, Jong-Ryul;Park, Hoe Man
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.401-409
    • /
    • 2018
  • Decay of fruit is one of the greatest issues in fruit storage. Purpose: In this study, citrus sterilization was performed to evaluate a dry sterilization method using an atmospheric-pressure nonthermal plasma treatment based on a dielectric-barrier discharge technique. Methods: Citrus samples were stored under four different environmental conditions as follows: group A had cold storage with plasma treatment with a temperature of $6.2{\pm}1.0^{\circ}C$ and relative humidity (RH) of $93.4{\pm}8.2%$, group B had ambient-temperature storage with $22.9{\pm}2.3^{\circ}C$ and $82.1{\pm}4.5%$ RH, group C ambient-temperature storage with plasma treatment with $25.3{\pm}2.2^{\circ}C$ and $90.0{\pm}2.8%$ RH, and group D had cold storage with $5.7{\pm}1.0^{\circ}C$ and $93.4{\pm}6.5%$ RH. Results: As a result of citrus surface sterilization by plasma treatment, treatment groups A and C together showed an average of 16.1 CFU/mL of mold colonies, while control groups B and D showed an average of $2.2{\times}10^2CFU/mL$ or approximately 13 times greater than the treatment groups. Regarding the mean concentration of aerobic bacteria colonies, the treatment groups (A and C) and control groups (B and D) showed an average of 7.1 CFU/mL and $1.9{\times}10^3CFU/mL$, respectively. This is approximately a 270-fold difference in the concentration of pathogen colonies between treatment and control groups. Conclusions: The results showed the potential of nonthermal plasma treatment for citrus storage in enhancing storage duration and quality preservation.

Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing

  • Jung, Samooel;Kim, Hyun Joo;Park, Sanghoo;Yong, Hae In;Choe, Jun Ho;Jeon, Hee-Joon;Choe, Wonho;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.703-706
    • /
    • 2015
  • The interaction of plasma with liquid generates nitrogen species including nitrite (NO2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (p<0.05) were significantly higher than the control. These data indicate that PTW can be used as a nitrite source in the curing process of meat without addition of other nitrite sources.

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Study on the Generation of Chemically Active Species Using Gas-liquid Mixing Plasma Discharging System (기-액 혼합 플라즈마 방전 시스템에서 화학적 활성종의 생성)

  • Kim, DongSeog;Park, YoungSeek
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.394-402
    • /
    • 2014
  • High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and oxygen flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the 2nd voltage (4 kV to 15 kV) was increase, RNO degradation was increased and, generated $H_2O_2$ and $O_3$ concentration were increased. The conductivity of the solution was not influencing the RNO degradation, $H_2O_2$ and $O_3$ generation. The pH effect on RNO degradation was not high. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.

Removal of Styrene Using Different Types of Non-Thermal Plasma Reactors (저온플라즈마 반응기의 형태에 따른 스타이렌 분해 특성에 관한 연구)

  • Park, Jeong-Uk;Choi, Kum-Chan;Kim, Hyun-Ha;Ogata, Atsushi;Futamura, Shigeru
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.215-223
    • /
    • 2005
  • Non-thermal plasma decomposition of gas-phase styrene was investigated in this study using three different types of plasma reactors; dielectric-barrier discharge (DBD) reactor, surface discharge (SD) reactor and plasma-driven catalyst (PDC) reactor packed with 2.0 wt% $Ag/TiO_2$ catalysts. The main parameters used for the comparative assessment of the plasma reactors include the decomposition efficiency, carbon balance, byproduct distribution, COx ($CO+CO_2$) selectivity and COx yield. The SD and the DBD reactors showed better conversion efficiency of styrene than that of the PDC reactor due to their larger capability in ozone formation. On the other hand, the PDC reactor showed better carbon balance, the yield and the selectivity of COx. The required specific input energies to achieve 100% carbon balance from the decomposition of 100 ppmv styrene using the plasma alone reactors and the PDC reactor were 420 J/L and 110 J/L, respectively. The major decomposition products in gas-phase were CO, $CO_2$ and HCOOH regardless of the types of plasma reactors. In the case of SD and DBD reactors, the $CO_2$ selectivity ranged in $39.5{\sim}60%$. The $CO_2$ selectivity in the PDC reactor was in range of $68.5{\sim}75.5%$.