• Title/Summary/Keyword: Dielectric materials

Search Result 2,107, Processing Time 0.028 seconds

Uncertainty Analysis and Compensation of the Cell for Permittivity Measurement of Solid Materials (고체재료의 유전율 측정용 Cell의 불확도 분석과 보상)

  • Kim, Han-Jun;Yu, Kwang-Min;Kang, Jeon-Hong;Han, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.53-56
    • /
    • 2008
  • The commercial parallel plate electrodes system with guard-ring electrode have been widely used for measurement of dielectric constants of solid materials. And the specification of the electrodes system is about 1 % of measurement uncertainty. This measurement uncertainty is only estimated the error come from mechanical measurements such as the area of the electrodes and the gap between the electrodes except the error come from the air gap between the electrodes and dielectric specimen. Because it is impossible to measure the air gap. This study analyze the total measurement uncertainties of the commercial dielectric constant test cell using 3 kinds of Standard Reference Materials. As a results, the total measurement uncertainty is much bigger than 1 % and the most of the uncertainty can be reduced by compensation of the error values evaluated in this study.

Design of a new barrier rib with low dielectric constant and thermal stability

  • Lee, Chung-Yong;Hwang, Seong-Jin;You, Young-Jin;Lee, Sang-Ho;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.725-727
    • /
    • 2009
  • Lowering the dielectric constant is one of the important issues for the efficiency and the power consumption in the plasma display panel (PDP) industry. This study examined the effect of the addition of ceramic filler (up to 10% of crystalline and amorphous silica, respectively) to a $B_2O_3$-ZnO- $P_2O_5$ glass matrix on the dielectric, coefficient of thermal expansion, etching behaviors and residual stress for the barrier ribs in plasma display panels. The dielectric constant of barrier ribs is affected by containing two types of $SiO_2$ filler for the barrier rib composition in PDP.

  • PDF

Dielectric Property of Hydrophilic Copolymer Thin Films (친수성 고분자 박막의 유전 특성)

  • Choi, Seung-Ryul;Im, Kyung-Jin;Kim, Jun-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.229-229
    • /
    • 2007
  • In this study, HEMA-based hydrophilic copolymers were synthesized and dielectric constant (K) of the polymer thin films were investigated by change hydroxyl group (-OH) ratio in the polymer chain. The different hydroxyl group ratios were characterized by FT-IR and its thin films were obtained by spin coating. As a result, due to the moisture absorption of the hydrophilic thin film, the dielectric constant has been increased as was expected. The highest dielectric constant (K=4.19, @1MHz) was observed at 40% hydroxyl group ratio among the several polymers.

  • PDF

Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors

  • Yoon, Jung-Rag;Han, Jeong-Woo;Lee, Kyung-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.116-120
    • /
    • 2009
  • Ceramic-polymer composites have been investigated for their suitability as embedded capacitor materials because they combine the processing ability of polymers with the desired dielectric properties of ceramics. This paper discusses the dielectric properties of the ceramic ($BaTiO_3$)-polymer (Epoxy) composition as a function of ceramic particle size at a ceramic loading of 40 vol%. The dielectric constant of these ceramic-polymer composites increases as the powder size decreases. Results show that ceramic-polymer composites have a high dielectric constant associated with the $BaTiO_3$ powder with a 200 nm particle size, high insulation resistance, high breakdown voltage (> 22 KV/mm), and low dielectric loss (0.018-0.024) at 1 MHz.

A Study on Dielectric Properties of Printed Circuit Board(PCB) Materials with Variation of Frequency and Temperature using Coaxial Air Line Probe (동축선로 프로브를 이용한 프린트 배선 회로용 기판 재료의 주파수 및 온도 변화에 따른 유전특성 연구)

  • 박종성;김종헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.187-190
    • /
    • 1998
  • In this paper a probe for the' measurement of dielectric properties of dielectric sheet materials is designed and implemented as a coaxial air line type. Using the broadband impedance method with this measurement probe the dielectric constant and loss tangent of the glass-epoxy and teflon are determined in the frequency range of 0.1 - l.O[GHz] with the temperature variation from $25[^{\circ}C]$ up to $65[^{\circ}C]$. A measured relative dielectric constant of the glass-epoxy is 4.42 and a loss tangents is 0.019 relatively, and the relative dielectric constants of teflon is 2.17 and a loss tangents is 0.002 relatively

  • PDF

The Microwave Measurement of the Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method (마이크로파에서 Dielectric rod resonator method에 의한 저유전 손실 물질의 유전 특성 측정에 관한 연구)

  • 심화섭;이한영;김근영;김진헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.21-25
    • /
    • 1989
  • Theory and experimental results are presented to show the possibility of using a dielectric rod resonator method for characterizing dielectric materials at microwave frequency. The measuring structure is a resonator made up of a cylindrical dielectric rod placed between two parallel conducting plates. In this system, the TE$\_$011/ mode frequency was adapted to minimize the effect of the air-gap between the rod and the conducting plates. The dielectric properties are computed from the resonance frequencies, structure dimensions and 3-dB bandwidth.

  • PDF

Dielectric Properties of the PFN-PFW-PMN Ceramics for the MLCC (MLCC용 PFN-PFW-PMN 세라믹의 유전 특성)

  • Park, In-Gil;Ryu, Ki-Won;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.747-749
    • /
    • 1992
  • In this study, $0.45Pb(Fe_{1/2}Nb_{1/2})O_3-(0.55-x)Pb(Fe_{2/3}W_{1/3})O_3-xPb(Mg_{1/3}Nb_{2/3})O_3(x=0.20, 0.25, 0.30)$ (x=0.20, 0.25, 0.30) ceramics were fabricated by the mixed oxide method. The sintering temperature and time were 950-990[$^{\circ}C$], 2[hr], respectively. The dielectric and structural properties with the composition and sintering temperature were investigated for the application as multilayer ceramic capacitors. To improve the dielectric loss, specimens doped with $MnO_2$, (0$\sim$2.0 [mol%] ) were fabricated and their dielectric properties were studied. With increasing the amount of $MnO_2$, dielectric constant was decreased and transition temperature was increased. Dielectric constant and dielectric loss of the 0.45PFN-0.30PFW-0.25PMN+$MnO_2$(1.0[mol.%]specimen(970[$^{\circ}C$]) had a good properties of 11,227, 1.3[%].

  • PDF

Electrical Properties of Large Alumina Ceramics Prepared by Various Processing (제조 공정별 대형 알루미나 세라믹스의 전기적 특성)

  • Cho, Kyeong-Sik;Lee, Hyun-Kwuon;Park, Young-Il;Kim, Mi-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • The size of various alumina ceramics used in semiconductor and display industry is required to increase with increase in wafer and panel size. In this research, large alumina ceramics were fabricated by uniaxial pressing, cold isostatic pressing and filter pressing with commercial powder and thereafter sintering at $1600^{\circ}C$ in gas furnace. The large alumina ceramics exhibited dense microstructure corresponding to 98.5% of theoretical density and 99.8% of high purity. The impurities and microstructural defects of the alumina were found to influence the resistance and dielectric properties. The volume resistances in these four aluminas were almost the same while the pure alumina was higher value. The dielectric constant, dielectric loss and dielectric strength of aluminas were placed within the range of 10.3~11.5, 0.018~0.036, and 10.1~12.4 kV/mm, respectively.

Phase Evolution, Thermal Expansion, and Microwave Dielectric Properties of Cordierite-Al2O3 Composite

  • Kim, Shin;Song, Eun-Doe;Hwang, Hae-Jin;Lee, Joo-sung;Yoon, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.337-341
    • /
    • 2021
  • Phase evolution, thermal and microwave dielectric properties of cordierite-Al2O3 composite were investigated. As the content of Al2O3 increased, mullite, sapphirine, and spinel were formed as secondary phases, implying that cordierite may be decomposed by the reaction with Al2O3. All sintered specimens exhibited dense microstructures. The densification occurred through liquid phase sintering. As the content of Al2O3 increased, the thermal expansion coefficient and the dielectric constant increased, whereas the quality factor decreased. The thermal expansion coefficient, the dielectric constant, and the quality factor of the 90 wt% cordierite 10 wt% Al2O3 composite sintered at 1,425℃ were 2.9×10-6 K-1, 5.1, and 34,844 GHz, respectively.

A Study for the Dielectric Properties Dependent on Frequency and Temperature in Polymerzed Materials (합성수지의 유전주파수 및 온도특성에 대한 고찰)

  • 김봉흡;이준웅
    • 전기의세계
    • /
    • v.19 no.5
    • /
    • pp.8-16
    • /
    • 1970
  • The characteristics of dielectric absorption and dispersion in polymerized materials produced in Korea was investigated in MHz band and at several sets of temperature. For this study the theoretical basis stood on the Cole-Cole's empirical formula and it has been extended to the form convenient to investigate the observation. As the result, it has been confirmed that in most cases, two or much more sorts of dipole participate in dielectric propertics of these polymers and the materials containing aromatic molecular structure have, in general, greater loss angle than those constructed chain type molecular structure.

  • PDF