• 제목/요약/키워드: Dielectric Barrier Discharge Plasma

검색결과 204건 처리시간 0.033초

Atmospheric Pressure Plasma Ashing of Photoresist Using Pin to Plate Dielectric Barrier Discharge

  • Park, Jae-Beom;Oh, Jong-Sik;Yeom, Geun-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1500-1503
    • /
    • 2009
  • In this paper, we studied about atmospheric pressure remote plasma ashing of photoresist(PR), by using a modified dielectric barrier discharge(DBD). The effect of various gas combinations such as $N_2/O_2$, $N_2/O_2+SF_6$ on the changes PR ashing rate was investigated as a function of power. The maximum PR ashing rate of 1850 nm/min was achieved at $N_2$ (70 slm)/ $O_2$ (200 sccm) + $SF_6$ (3 slm). We found that as the oxygen and fluorine radical peaks were increased, the ashing rate is increased, too.

  • PDF

Development of an advanced atmospheric pressure plasma source with high spatial uniformity and selectiveness for surface treatment

  • 임유봉;최원호;이승훈;한우용;이종현;이상균;하정민;김종훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.176-177
    • /
    • 2016
  • In the last few decades, attention toward atmospheric pressure plasma (APP) has been greatly increased due to the numerous advantages of those applications, such as non-necessity of high vacuum facility, easy setup and operation, and low temperature operation. The practical applications of APP can be found in a wide spectrum of fields from the functionalization of material surfaces to sterilization of medical devices. In the secondary battery industry, separator film has been typically treated by APP to enhance adhesion strength between adjacent films. In this process, the plasma is required to have high stability and uniformity for better performance of the battery. Dielectric barrier discharge (DBD) was usually adopted to limit overcurrent in the plasma, and we developed the pre-discharge technology to overcome the drawbacks of streamer discharge in the conventional DBD source which makes it possible to produce a super-stable plasma at atmospheric pressure. Simulations for the fluid flow and electric field were parametrically performed to find the optimized design for the linear jet plasma source. The developed plasma source (Plasmapp LJPS-200) exhibits spatial non-uniformity of less than 3%, and the adhesion strength between the separator and electrode films was observed to increase 17% by the plasma treatment.

  • PDF

유전체 배리어 방전 플라즈마를 이용한 에틸렌의 분해 (Decomposition of Ethylene by Using Dielectric Barrier Discharge Plasma)

  • 장두일;임태헌;이상백;목영선;박회만
    • 공업화학
    • /
    • 제23권6호
    • /
    • pp.608-613
    • /
    • 2012
  • 유전체 배리어 방전 플라즈마를 모사 농산물 저장시설($1.0m^3$)의 에틸렌 제거에 적용하였다. 에틸렌이 포함된 공기를 플라즈마 반응기에 유입시켜 처리한 후 다시 농산물 저장시설로 재순환하는 방식으로 시험을 수행하였다. 주요 운전변수는 방전전력, 순환기체 유량, 초기 에틸렌 농도 및 처리시간이었다. 에틸렌의 분해속도는 주로 방전전력과 처리시간에 의해 결정되었다. 다른 조건을 일정하게 유지한 상태에서 플라즈마 반응기 후단에 이산화망간 오존분해 촉매를 설치했을 경우 오존분해 촉매가 없을 때 보다 에틸렌 제거속도가 더 빨랐는데, 이 결과는 플라즈마 반응기에서 배출되는 오존이 농산물 저장시설에 유입 축적되어 에틸렌을 추가적으로 분해했기 때문이다. 에틸렌 초기 농도 50 ppm을 기준으로 하면 이를 완전히 분해하기 위한 에너지 요구량은 약 60 kJ이었다.

대기압 RF DBD 방전으로 개질된 폴리이미드의 표면특성 (Surface Properties of Polyimide Modified with He/O2/NF3 Atmospheric Pressure RF Dielectric Barrier Discharge)

  • 이수빈;김윤기;김정순
    • 한국재료학회지
    • /
    • 제16권9호
    • /
    • pp.543-549
    • /
    • 2006
  • Polyimides (PI) are treated with $He/O_2$ and $He/O_2/NF_3$ atmospheric pressure rf dielectric barrier discharge in order to investigate the roles of $NF_3$ that is one of the PI etching gases. Surface changes are analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurement. The surface roughness of PI and the ratio of C=O, which is hydrophilic functional group, is more increased by $He/O_2/NF_3$ discharge than by $He/O_2$ discharge. The C=O species on the PI surface is increased up to 30 percent with rf power. The surface roughness of PI is increased from 0.4 to 11 nm with rf power. The water drop contact angles on PI, however, are reduced from $65^{\circ}\;to\;9^{\circ}$ by plasma treatment independently of $NF_3$.

이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상 (Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle)

  • 박영식
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

유전체 장벽 방전 플라즈마 방전수의 특성과 미생물 소독에 관한 연구 (A Study on the Microorganism Disinfection and Characteristics of Discharged Water of Dielectric Barrier Discharge Plasma Systems)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제38권2호
    • /
    • pp.159-165
    • /
    • 2012
  • Objectives: This experiment was carried out to elucidate the effect of discharged water on the disinfection of $Phytophthora$ $capsici$ and evaluate the water characteristics. Methods: The dielectric barrier discharges (DBD) plasma reactor system used in this study consisted of a plasma component [discharge, ground electrode and quartz dielectric tube], high voltage source, and air supply. The effects of water characteristics such as pH, ORP and conductivity and the disinfection effect of discharged water were investigated. Results: Experimental results showed that in the process of discharge, the pH decreased, whereas ORP and electric conductivity increased. When the discharge time was 30 min, $Phytophthora$ $capsici$ of 2.94 log was disinfected within 300 seconds. Disinfection performance of stored discharged water was maintained for three days; however the disinfection effect vanished after five days. When $Phytophthora$ $capsici$ was injected into the discharged water, the disinfection effect decreased after two days. Conclusions: It is considered that the main disinfection parameters of the discharged water were chemically active species such as $H_2O_2$ and $O_3$ and high ORP.

음이온 발생을 위한 저온 플라즈마 반응기 개발에 관한 연구 (A study on non-thermal plasma reactor for generation of negative ions)

  • 유광훈;채재우;김우형;위위;왕혜
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2344-2347
    • /
    • 2007
  • To generate negative ion, a small dielectric barrier discharge (DBD) plasma reactor was used in this study and operated by high AC voltage. With increasing of voltage, we can get more negative ions. However unfortunately, if the input voltage is too high, it will also cause formation of ozone which is very harmful to human being health. So the work of finding out the best condition of Voltage and frequency was carried out firstly. After several times of measurement, operating at 20 kHz frequency is the best condition generating high ion concentration without ozone. For the purpose of finding out the best reactor structure, two types of surface dielectric barrier discharge (DBD) reactors were examined to produce negative oxygen ions at the conditions of 20 kHz frequency. The results indicated that the surface DBD reactor with several small tips showed better characteristics for generation of negative oxygen ions at the same condition.

  • PDF

활성탄 또는 촉매가 장착된 배리어 유전체 방전 하이브리드. 공기청정 시스템의 나노입자 및 잔류 오존 제거 특성 (Nano Particle Precipitation and Residual Ozone Decomposition of a Hybrid Air Cleaning System Comprising Dielectric Barrier Discharge Plasma and MnO2 Catalyst or Activated Carbon)

  • 변정훈;황정호;지준호;강석훈
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.524-533
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Aim of this work is to determine design and operating parameters of a hybrid air cleaning system. DBD and ESP(Electrostatic Precipitator) are used as nano particle charger and collector, respectively. Pelletized MnO$_2$ catalyst or activated carbon is used fer ozone decomposition or adsorption material. AC voltage of 7~10 KV(rms) and 60 Hz is used as DBD plasma source. DC - 8 KV is applied to the ESP for particle collection. The overall particle collection efficiency for the hybrid system is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized MnO$_2$ catalyst or activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

슬릿 유전체 장벽을 갖는 선대 평판형 방전장치의 방전 및 오존 발생특성 (Discharge and Ozone Generation Characteristics of a Wire-Plate Discharge System with a Slit Barrier)

  • 문재덕;정재승
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권9호
    • /
    • pp.421-426
    • /
    • 2005
  • A wire-plate discharge system with a slit barrier has been proposed and investigated experimentally by focusing on the discharges on the slit barrier and ozone generation characteristics. This wire-plate discharge system with a slit barrier can generate an intensive corona discharges, and produce corona discharge twice, once from the corona wire electrode and second time from the surface and the slits of the slit dielectric barrier. As a result this propose wire-plate discharge system with the slit barrier can produce greatly increased ozone than without the slit barrier. This type of wire-plate discharge system with the slit barrier could be used for effective ozone generation as a means with retard to the removal of pollutant gas

수중 유전체 장벽 방전 플라즈마를 이용한 페놀의 분해 특성 (Characteristics of phenol degradation by using underwater dielectric barrier discharge plasma)

  • 신관우;최승규;김진수;주천;원경자;이상일
    • 상하수도학회지
    • /
    • 제33권4호
    • /
    • pp.243-250
    • /
    • 2019
  • This objective of this study was to investigate the degradation characteristics of phenol, a refractory substance, by using a submerged dielectric barrier discharge (DBD) plasma reactor. To indirectly determine the concentration of active species produced in the DBD plasma, the dissolved ozone was measured. To investigate the phenol degradation characteristics, the phenol and chemical oxygen demand (COD) concentrations were evaluated based on pH and the discharge power. The dissolved ozone was measured based on the air flow rate and power discharged. The highest dissolved ozone concentration was recorded when the injected air flow rate was 5 L/min. At a discharge power of 40W as compared to 70W, the dissolved ozone was approximately 2.7 - 6.5 times higher. In regards to phenol degradation, the final degradation rate was highest at about 74.06%, when the initial pH was 10. At a discharged power of 40W, the rate of phenol decomposition was observed to be approximately 1.25 times higher compared to when the discharged power was 70W. It was established that the phenol degradation reaction was a primary reaction, and when the discharge power was 40W as opposed to 70W, the reaction rate constant(k) was approximately 1.72 times higher.