• Title/Summary/Keyword: Die-layout

Search Result 118, Processing Time 0.028 seconds

A Study on the Multi-row Progressive Die for Thin Sheet Metal Forming by Computer Simulation

  • Sim, Sung-Bo;Kim, Chung-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2008
  • The progressive die performs a work of sheet metal processes with a piercing, notching, embossing, bending, drawing, cut-off etc. in many kinds of pressing. Now a days, these processes have been evaluated as a advanced tooling method to increase the productivity and high quality assurance. The first step analyzing of die design is production part review, then the arrangement drawing of product design and strip process layout design should be done as a next steps with a FEM simulation for its problem solution. After upper procedure were peformed, it was started to make the die, then tryout and its revision of the die and product quality, safety, productivity etc. were done continually. For the all of these process, we mobilized the theory and practice of sheet metal forming, die structure, the function and activity of die components, and the others of die machining, die material, heat treatment and know‐how so on. In this study the features of representative are production part analyzing through the FEM simulation of bending area with a considering spring back problem by DEFORM.

  • PDF

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

Study on the 3D Design of Bracket with Automatic Module (자동화 모듈을 활용한 브라켓의 3D설계에 관한 연구)

  • Choi, Kye-Kwang;Kim, Kwang-Hee;Lee, Dong-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1164-1169
    • /
    • 2009
  • In this study, the bracket for car was designed in 3D using Cimatron Die Design, one of the automatic modules. To facilitate the stamping of the product, the layout of the strip was adjusted slightly. The blank layout of the double-width, 2-line, 2-pull out inner carrier was then optimized as a single arrangement. 3D design was completed in 11 processes.

스테이터 및 로터의 블랭킹에 관한 자동화된 공정설계 및 금형설계 시스템

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul;Lee, Seung-Min
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.642-647
    • /
    • 1994
  • This paper describes some research works of computer-aided design of blanking & piercing progressive die for stator and rotor parts by the press. An approach to the system is based on knowledge based rules. The developed system is composed of five main modules such as input & graphic interface, blanking feasibility check, strip layout, die layout and output module. Using this system, design parameters (geometric shapes, die generated in dimensions and dimensions of tool elements) are determined and output is generated in graphic form. Knowledges for tool design are extracted from the plasticity theories, handbooks, relevent references and empirical know-hows of experts in blanking companies. The developed system provides powerful capabilities for process planning and die design of stator and rotor parts.

  • PDF

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( PartII) - Die Design and Die Making -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.287-291
    • /
    • 2001
  • In this study, we designed and constructed a multi-forming progressive die with a bending, embossing on the multi-stage and performed through the try out. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF

An integrated CAD system for blanking or piercing of irregular-shaped sheet metal products (불규칙형상의 박판제품에 관한 블랭킹 및 피어싱용 통합적 CAD시스템)

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul;Yoon, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.124-133
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for irregular-shaped sheet metal products. An approach to the development of compact and practical CAB system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer. Based on knowledge-based rules, the system, STRT-DES, is designed by considering several factors, such as complexities of blank geometry and punch profile, availability of press equipment and standard parts, utilization ratio which minimizes the scrap in a single or a pairwise operation, bridge width, grain orientation and design requirements which maximize the strength of the part when subsequent bending is involved. This system checks a forming feasibility with both internal and external features, a dimension of blanked hole, and a corner and a fillet radius for irregualrly shaped sheet metal products. Therefore this system can carry out a die design for each process which is obtained from results of an automated blank layout drawing with a best utilization ratio for irregular shape of product that was successful in production feasibility check module and those of an automated strip layout drawing and generate part drawings and the assembly drawing of die set in graphic forms.

  • PDF

A study on the analysis of terminal die and progressive die manufacture (단자 금형의 해석 및 프로그레시브 금형제작에 관한 연구)

  • Kim, Dong-Wook;Choi, Young-Rock;Kim, Sei-Hwan;Choi, Kyu-Kwang
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.41-44
    • /
    • 2015
  • The progressive die is processing methods that can improve the productivity for sequentially transferring while continuously producing in multiple processes. In this study was carried out the die analysis through the load analysis acting on the terminal die and sheet metal forming also the study was carried out with respect to optimized die design for the terminal die and progressive die manufacturing using the CimatronE Die Design.

  • PDF

Development of Perforating Die for Manufacturing Fine Multi-perforated type Nail Files (미세 다수공 타입의 네일파일 제조용 퍼퍼레이팅 금형 개발)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 2004
  • 0.5mm thick steel is used to manufacture nail files. The first process is blanking and the second process is making about 300 holes of 0.8-l.0mm in diameter. This process depends mainly on etching which takes 33% of manufacturing cost and it can make manufacturing cost rise. The residual etching reagent is not environmentally friendly and the steel material is apt to rust as well. To solve these problems, researches on the following subjects are performed: proper material to prevent from rusting and strip layout strategies in stamping to replace etching process with press process which makes use of die. And new quill type punch is developed to replace the regular standard punch, one of the die parts, which frequently get broken while working. And these researches and developments lead to develop a progressive perforating die.

  • PDF

A Study on the Development of Progressive Die for Cutoff Type U-Bending Process

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • The Cut off-type progressive die for U-bending production part is a very specific division. This study reveals the sheet metal forming process with multi-forming die by Center Carrier type feeding system. Through the FEM simulation by DEFORM, it was accepted to u-bending process as the first performance to design of strip process layout. The next process of die development was studied according to sequence of die development, i.e. die structure, machining condition for die making, die materials, heat treatment of die components, know-how and so on. The feature of this study is the die development of scrapless progressive die of multi-stage through the Modeling on the I-DEAS program, components drawing on the Auto-Lisp, CAD/CAM application, ordinary machine tool operating and revision by tryout.

  • PDF

A New Multi-Stage Layout Approach for Optimal Nesting of 2-Dimensional Patterns with Boundary Constraints and Internal Defects (경계구속 및 내부결함을 고려한 이차원 패턴의 최적배치를 위한 다단계 배치전략)

  • 한국찬;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3236-3245
    • /
    • 1994
  • The nesting of two-dimensional patterns onto a given raw sheet has applications in a number industries. It is a common problem often faced by designers in the shipbuilding, garment making, blanking die design, glass and wood industries. This paper presents a multi-stage layout approach for nesting two-dimensional patterns by using artificial intelligence techniques with a relatively short computation time. The raw material with irregular boundaries and internal defects which must be considered in various cases of nesting was also investigated in this study. The proposed nesting approach consists of two stages : initial layout stage and layout improvement stage. The initial layout configuration is achieved by the self-organizing assisted layout(SOAL) algorithm while in the layout improvement stage, the simulated annealing(SA) is adopted for a finer optimization.