• 제목/요약/키워드: Die-layout

검색결과 118건 처리시간 0.021초

불규칙형상 박판제품의 블랭킹 및 피어싱용 CAD/CAM 시스템 (A CAD/CAM System for Blanking or Piercing of Irregular Shaped-Sheet Metal Products)

  • 최재찬;김철;박상봉
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.174-182
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and machining of irregular shaped-sheet metal product for blanking or piercing operation. An approach to the CAD/CAM system is based on the knowledge-based rules. Knowledge for the CAD/CAM system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, strip-layout, die-layout, data conversion, modelling, and post-processor module. Based on knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of generating NC data automatically according to drawings of die-layout module. Results which are carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing die in this field.

  • PDF

Development of the Practical and Adaptive Die of Fixed Stripper Type for Marine Part Sheet Metal Working(part 1)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.35-39
    • /
    • 2000
  • The piercing and blanking of thin sheet metal working is specified division in press die design and making. In order to prevent the detects, the optimum design of the production part, strip process layout, die design, die making and try out etc. are necessary the analysis of effective factors. For example, theory and practice of metal shearing process and its phenomena, die structure, machine tool working for die making, die materials and its heat treatment, metal working in industrial and its know how etc. In this study, we analyzed whole of data base, theoretical back ground of metal working process, and then performed the progressive die tryout with the screw press. This study regards to the aim of small quantity of production parts press working. Part 1 of this study reveals with production part and strip process layout design.

  • PDF

Ez5의 스트립 레이아웃 설계에 관한 연구 (A Study on the Strip Layout Design of Ez5)

  • 김세환;최계광
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.588-593
    • /
    • 2011
  • 프로그레시브 노칭과 포밍금형에 있어서 박판성형해석에 의한 사전 분석은 제품을 양산하는데 꼭 거쳐야 하는 필수과정이다. 본 논문에서 연구한 Ez5는 일본 S 자동차의 미국 현지 공장에서 발주한 수출 금형을 가지고 스트립 레이아웃 설계에 관한 것을 연구한 것이다. 광폭 1열 1개 뽑기의 편측캐리어를 단 배열로 블랭크 레이아웃을 최적화하여 13개 공정으로 된 스트립 레이아웃설계를 완성하였다. 이런 형태의 금형수주는 앞으로 동시 다발적이고, 매우 빈번히 인터넷 공간상에서 발생할 것이며 금형에 대한 기술력을 갖춘 업체는 이러한 방식에 대응할 준비를 갖추어야 할 것이다.

Development of The Multi Forming Type Ultra Precision Die for Sheet Metal ( Part I )- Production Part and Strip Process Layout -

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2001
  • This study reveals the sheet metal working with multi-forming type ultra precision process. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming ultra precision progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. This part I of papers related to the analysis of production part and strip process layout design through the metal forming simulation by DEFORM and IDEAS.

  • PDF

HEV UV단자의 스트립 레이아웃과 금형설계에 관한 연구 (Study on the Strip Layout & Die Design of HEV UV Terminal)

  • 최계광;김세환;조윤호
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.4691-4696
    • /
    • 2010
  • 본 논문에서는 HEV UV단자를 자동화 모듈인 씨마트론 다이 디자인을 활용하여 스트립 레이아웃설계를 3D로 하였다. 제품의 스탬핑을 원활하게 하기 위하여 스트립 레이아웃을 33.5도 경사지게 수정하여 광폭 1열 1개 뽑기의 내측캐리어를 단 배열로 블랭크 레이아웃을 최적화하였다. 1개의 금형에서 두개의 단자를 공용으로 양산하기 위해 29개 공정으로 3D 스트립 레이아웃설계 및 금형설계를 완성하였다.

복합공정(피어싱, 벤딩, 디프드로잉)을 갖는 제품 제조를 위한 프로그레시브 설계 자동화 시스템 개발 (Development of an Automated Progressive Design System for Manufacturing Product with Multi Processes, Piercing, Bending, and Deep Drawing)

  • 황범철;김철;배원병
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.55-64
    • /
    • 2008
  • This paper describes a research work of developing an automated progressive design system for manufacturing the product with multi processes such as piercing, bending, and deep drawing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system consists of three main modules, which are shape treatment, strip layout, and die layout modules. Based on knowledge-based rules, the system is designed considering several factors, such as material and thickness of a product, piercing, bending and deep drawing sequence, and the complexities of the blank geometry and punch profiles. It generates the strip layout drawing for an automobile product. Die design for each process is carried out through the die layout module from the results of the strip layout module. Results obtained using the modules enable the designers for manufacturing products with multi processes to be more efficient in this field.

A Study on the Development of Center Carrier Type Progressive Die for U-Bending Production Part

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.80-85
    • /
    • 2002
  • The progressive die for U-bending production part is a very specific division. This study reveals the Sheet metal forming process with multi-forming die by Center Carrier type feeding system. Through the FEM simulation by DEFORM it was accepted to u-bending process as the first performance to design in strip process layout design. The next process of die development was studied according to sequence of die development.

  • PDF

반도체 리드 프레임 제조를 위한 프로그레시브 금형의 CAD/CAM 시스템 개발 (Development of Progressive Die CAD/CAM System for Manufacturing Lead Frame, Semiconductor)

  • 최재찬;김병민;김철;김재훈;김창봉
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.230-238
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64) and tool kit on the ESPRIT. Transference of data among AutoCAD, I-DEAS Master Series Drafting, and ESPRIT is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of six modules, which are input and shape treatment, production feasibility check, strip-layout, die-layout, modelling, and post-processor modules. The system can design process planning and Die design considering several factors and generate NC data automatically according to drawings of die-layout module. As forming process of high precision product and die design system using 2-D geometry recognition are integrated with technology of process planning, die design, and CAE analysis, standardization of die part in die design and process planning of high pression product for semiconductor lead frame is possible to set. Results carried out in each module will provide efficiencies to the designer and the manufacturer of lead frame, semiconductor.

  • PDF

반도체 리드 프레임의 금형설계 자동화 시스템 개발에 관한 연구 (A Study on the Development of Computer Aided Die Design System for Lead Frame, Semiconductor)

  • 최재찬;김병민;김철;김재훈;김창봉
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.123-132
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from pasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64). Transference of data between AutoCAD and I-DEAS Master Series Drafting is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of five modules, which are input and shape treatment, production feasibility check, strip-layout, data-conversion and die-layout modules. The process planning and Die design system is designed by considering several factors, such as complexities of blank geometry, punch profiles, and the availability of a press equipment and standard parts. This system provides its efficiecy for strip-layout, and die design for lead frame, semiconductor.

  • PDF

박판제품의 블랭킹 및 피어싱과 굽힘 가공을 위한 순차이송용 공정 및 금형 설계와 가공자동화 시스템 (A Progressive Automated-Process Planning and Die Design and Working System for Blanking or Piercing and Bending of Sheet Metal Product)

  • 최재찬;김철
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.246-259
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and manufacturing of irregular shaped sheet metal product for blanking or piercing and bending operations. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories experimental results and the empirical knowledge of field experts, This system has been written in AutoLISp on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules which are input and shape treatment, flat pattern-layout, pro-processor module. Based on the knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product complexities of blank geometry and punch profile sheet metal to give flat pattern and automatically account for the adjustment of bending allowances to match tooling requirements by checking dimensions and generating NC data automatically according to drawings of die-layout module. Results carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing and bending die in this field.

  • PDF