• Title/Summary/Keyword: Die spotting

Search Result 5, Processing Time 0.021 seconds

Analysis on the Bending Deflection of the Blank Holder in Automotive Body Panel Draw Die (차체용 드로우 다이의 블랭크 홀더 굽힘 변형 해석)

  • 인정제;신용승;김헌영;김재우;송명환;박진수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.249-254
    • /
    • 2000
  • The contact forces between die components for the drawing of large size automotive panels introduce elastic deflections of the die components. Due to the deflections, the gap between blank holder and die varies locally resulting in nonuniform material flow. Such a nonuniform die gap usually requires correcting operation, so called die spotting, which is time consuming trial and error process. To reduce the die spotting time, the optimization of the blank holder bending deflection is needed. In this paper, we implemented an analysis procedure to predict the blank holder deflection. The analysis procedure and design of experiments techniques are applied to the optimization of balance block heights. The optimization results can be used as guidelines in actual die spotting process.

  • PDF

Analysis on the Bending Deflection of the Blank Holder in Automotive Body Panel Draw Die (차체용 드로우 다이의 블랭크 홀더 굽힘 변형 해석)

  • 인정제;신용승;김헌영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.68-74
    • /
    • 2001
  • In the drawing of large size automotive panels, elastic deflection of die components is induced by the contact force between them. The deflection is nonuniform and locally distributed, and results in nonuniform material flow. In order to arrange such a nonuniform die gap, a correcting operation, so called die spotting, is inevitable, which requires trial and error works and consuming time. A prediction of the bending deflection prior to a try-out must be useful to reduce the die spotting time. In this study, drawing process of a front fender is simulated first. and the deflection of the blank holder is calculated from the contact force imposing on th blank holder. The balance block heights ensuring a uniform deflection are optimized by the analysis and design of experiments.

  • PDF

A Study on the Measurement System for Alignment of Cylindrical Forging Die (원통형 단조금형의 정렬을 위한 측정시스템에 관한 연구)

  • Youn, Jae-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2009
  • In most multi-stage forging processes, the die spotting process or alignment of punch and die depends on the manual operation. It results a very tedious and inefficient procedure, thus the proper measurement system is needed to improve productivity and accuracy. This paper proposes a measurement system for alignment of die and punch which has a cylindrical holder, and describes the system concepts using 3 eddy-current displacement transducers and precise measurement jig. In order to apply this measurement system to real situations, the measuring procedures and system calibration method, etc. are proposed. Finally, the accuracy and productivity of this measurement system are investigated in this paper.

Development of a Reverse Engineering System for Stamping Die Manufacturing (자동차 금형 Reverse Engineering 을 위한 측정 및 분석 시스템 개발)

  • 김덕영;노상도;한형상;주영관;박진수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.277-280
    • /
    • 2000
  • Reverse Engineering is a procedure where the results of engineering decisions in manufacturing is feedback to the design phase and the knowledge-base is generated from the process know-how to reduce the errors. Since it used to take lots of time and efforts to finalize the machining of dies out of the original CAD design especially for die spotting and try-outs, reverse engineering is important to improve the productivity and quality of the die manufacturing process. In this regard, we developed system to support reverse engineering in machining of stamping dies for auto-body production. They automatically generate the relevant MC programs for a CMM simply with the input of measuring points in CAD environments, and show the CAD model and the results of inspection simultaneously for the ease of comparison. They also help reduce the overall clearance between the lower and upper dies. Applying these systems to the machining process of stamping dies, we could improve the reliability of measuring and get the optimal compensation distance between the two dies. We also analyzed the expected benefits of the system in terms of savings in time and costs.

  • PDF

A Method for Generation of Grinding Map based on Automatic Mold Measurement (금형 자동측정에 의한 사상맵 생성)

  • Jeoung, Nam-Yeoung;Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.248-255
    • /
    • 2018
  • Ensuring the quality of molds is one of the major issues in mass production. In general, securing the quality of the molds is achieved by repeating grinding and die spotting after machining the molds based on engineer's decision. However, this heuristic method is affected by the engineer's skill and working environment. Therefore, a lot of time and resources are needed in order to ensure quality. In this study, ensuring the quality of molds using grinding map which is generated using automatic measurement is proposed. An automatic measuring system based on CMM (Coordinate Measuring Machine) is developed for measuring the molds. This system generates the measurement path automatically using the 3D CAD model of products. CAD (ComputerAided-Design), CAM (Computer-Aided-Manufacturing), and CAQ (Computer-Aided-Quality) technology is integrated using DMIS (Dimensional Measuring Interface Standard) format in the automatic measuring system. After measuring the molds, a grinding map is generated using the gap between the CAD model and measured values of mold. The grinding map displays the machining tendency and the required amount of grinding with values on a 3D map. Therefore, the quality of molds can be ensured with exactness and quickness based on the grinding map. This study shows that integrating the planning, measuring, and analyzing based on computer technology can solve the problem of quality assurance of mold using the proposed method, therefore the productivity can be increased.